1. Fault rotation model
	In a previous publication [Olive and Behn, 2014], we proposed a conceptual framework for understanding the rapid rotation of normal faults from a steep 60º-initiation angle down to dip angles in the 30–45º range, over a few km of offset. We proposed that fault evolution proceeded in a manner that systematically minimized the mechanical work required to sustain fault slip, and showed that (1) this assumption results in rotation rates that scale roughly as the inverse of the faulted layer thickness, and (2) accounting for rotation is essential to correctly predict fault lifespan in a force balance model. Here we adopt a complementary approach, which is significantly less computationally challenging to implement, but produces very similar rotation rates (see below).  Specifically, instead of assuming work minimization, we model fault rotation as the passive advection of the fault plane in the displacement field induced by flexural relaxation of the footwall and hanging wall blocks. 

If we denote  the average rotation rate of the near-fault displacement field, then the fault rotation rate will scale roughly as
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To first order, the main source of rotation in the flexural displacement field is the lateral gradient of vertical motion (Figure 1a), which is maximal at the fault and equal to V tanθ, and becomes negligible a fraction of the flexural wavelength (γα, the lever arm, where γ is a scaling factor and α is the flexural wavelength) away from the fault. We therefore write
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Plugging (S2) into (S1) with the constraint h = 2Vt yields
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Which can be integrated into
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In addition, we taper the rotation rate at heaves greater than 80% of the faulted layer thickness so that rotation ceases at large offsets, when the fault has become curved and the idealized fault geometry depicted in Figure 1a no longer applies.
	Fault rotation enters the force balance model in several ways. As extension proceeds, the elastic-plastic iterations predict the fault-induced topography [Buck, 1988; 1993]. At every extension step (h), we fit this topography with the elastic solution of Weissel and Karner [1989] and determine an equivalent elastic thickness for the entire plate. We then use it to calculate an equivalent flexural wavelength, α(h), which enters into the calculation of the next fault dip at step (h+Δh) following Equation (S4). We find that a scaling factor γ = 0.25 provides a good fit to the numerical models, regardless of layer thickness and other parameters. In other words, the lever arm associated with fault rotation corresponds to about a fourth of the effective flexural wavelength of the faulted layer.
	Once fault dip has been updated, it enters the calculation of the frictional force FFRIC, following [Behn and Ito, 2008]
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For reference, the threshold for breaking a new fault is given by
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where θ0 corresponds to the Andersonian dip for a new fault breaking intact lithosphere. (All notations are summarized in Figure 1a).
	Fault dip also enters the calculation of the bending and topographic forces. A fault that rotates as it accumulates offset generates less throw than if it were to retain its initial angle. We therefore slightly modify the method of Weissel and Karner [1989] by using an effective dip θEFF in the loading term of the flexure equation (w*(x) in Olive and Behn, 2014). For a given amount of heave (h) this effective dip yields the amount of throw that would have been reached by a rotating fault, and can be written:
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θEFF then enters the calculation of the fault-induced topography and the associated work terms.  Specifically, the bending work WBEND is obtained by integrating the bending stress times the bending strain over the entire layer [Olive and Behn, 2014], while the topographic work WTOPO corresponds to the change in gravitational potential energy associated with offsetting the air-rock density contrast, Δρ, from its initial flat state, and is written
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2. Comparison with the energy minimization model of Olive and Behn [2014]
In [Olive and Behn, 2014], we suggested that fault rotation proceeds in a manner that minimizes the work needed to sustain fault slip, but did not explicitly consider the physical mechanism that causes rotation. The present approach suggests that passive advection of the fault plane in a flexural displacement field provides a good candidate to explain the kinetics of rotation observed in numerical experiments. Indeed, this new model predicts the rotation kinematics observed in our simulations (Figure 2b). Much like the energy minimization model, it accounts for rapid rotation of normal faults down to dip angles of 30–45º over fault heaves shorter than half of the faulted layer thickness. Further, the inverse scaling of rotation rate with layer thickness is evident from Equation (S3) and is derived from the fact that thicker layers bend on a larger wavelength, making faults rotate about a longer lever arm. 
Finally, we find that the present kinematic model for fault rotation predicts dips that remain close to the lowest energy configuration throughout fault evolution, even though energy minimization was not assumed. Supplementary Figure fs01 compares the kinematic elastic-plastic solution for a 15 km thick layer (red line in Figure 2b) to an energy minimization model where plasticity is accounted for by assuming an effective elastic thickness of 7.5 km. Colors indicate the total amount of work required to sustain slip on the fault. The kinematic rotation model predicts slightly slower rotation then the energy minimization model for small offsets, which provides a better fit to numerical experiments (Figure 2b). 

[bookmark: _GoBack]Supplementary captions

Supplementary Figure fs01 – Total external work (WEXT  = WFRIC + WBEND  + WTOPO) required to keep a normal fault active as a function of fault dip and heave for increasing amounts of extension in a 15 km thick elastic pseudo-plastic layer with an effective elastic thickness of 7.5 km.  The white dashed line indicates the lowest energy path computed following the model of Olive and Behn [2014] taking into account all energy terms: WFRIC, WBEND, and WTOPO, the last of which was previously ignored. The thick white line shows the kinematic rotation model used in this study.

Supplementary Table ts01 – Summary of parameters and results of our numerical experiments.
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