The Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA

13 European Molecular Biology Laboratory (EMBL) Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK

14 School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Republic of Korea

15 School of Computer Science, University of Manchester, Manchester M13 9PL, UK

16 Oxford e-Research Centre, University of Oxford, Oxford OX1 3QG, UK

17 Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany

18 Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA

19 Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA

20 Department of Medicine and the Department of Microbiology, New York University Langone Medical Center, New York 10017, USA

21 National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

22 Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA

23 DOE Joint Genome Institute, Walnut Creek, California 94598, USA

24 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
25 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
26 Department of Applied Mathematics and Computer Science, Ghent University, 9000 Ghent, Belgium
27 Center for Environmental Biotechnology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
28 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
29 University of Colorado Museum of Natural History, University of Colorado, Boulder, Colorado 80309, USA
30 Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
31 National Ecological Observatory Network (NEON), Boulder, Colorado 80301, USA
32 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
33 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
34 Department of Biology, University of New Mexico, LTER Network Office, Albuquerque, New Mexico 87131, USA
35 Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
36 Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
37 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA

38 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia

39 Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA

40 Department of Biology, San Diego State University, San Diego, California 92182-4614, USA

41 Department of Microbiology, Cornell University, Ithaca, New York 14853, USA

42 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80302, USA

43 Lehrstuhl für Mikrobiologie, Technische Universität München, D-853530 Freising, Germany

44 J. Craig Venter Institute, Rockville, Maryland 20850-3213, USA

45 Department of Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA

46 Department of Biology, University of Waterloo, Ontario, N2L 3G1, Canada

47 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830-8020, USA

48 Ribocon GmbH, D-28359 Bremen, Germany

49 VIB - Vrije Universiteit Brussel, 1050 Brussels, Belgium

50 Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada
Here we present a standard developed by the Genomic Standards Consortium (GSC) to describe marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The “environmental packages” apply to any sequence whose origin is known and can therefore be used in combination with MIMARKS or other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we establish the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.
Abbreviations

CBOL: Consortium for the Barcode of Life
COI: cytochrome c oxidase I
DDBJ: DNA DataBank of Japan
DOI: Digital Object Identifier
DRA: DDBJ Sequence Read Archive
ENA: European Nucleotide Archive
EnvO: Environment Ontology
GAZ: Gazetteer
GCDML: Genomic Contextual Data Markup Language
GSC: Genomic Standards Consortium
ICoMM: International Census of Marine Microbes
INSDC: International Nucleotide Sequence Database Collaboration
ISA: Investigation/Study/Assay Infrastructure
ISO: International Organization for Standardization
MICROBIS: The Microbial Oceanic Biogeographic Information System
MIMARKS: Minimum Information about a MARKer Gene Sequence
MIGS/MIMS: Minimum Information about a Genome/Metagenome Sequence
MIRADA-LTERs: Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites
OBO: Open Biological and Biomedical Ontologies
PMID: Pubmed ID
RDP: Ribosomal Database Project
rRNA: ribosomal RNA
SI: International System of Units
SRA: Sequence Read Archive
SSU: small subunit
URL: Uniform Resource Locator
WGS84: World Geodetic System 84
XML Schema: Extensible Markup Language Schema
Without specific guidelines, most genomic, metagenomic and marker gene sequences in databases are sparsely annotated with the information required to guide data integration, comparative studies and knowledge generation. Even with complex keyword searches, it is currently impossible to reliably retrieve sequences that have originated from certain environments or particular locations on Earth—for example, all sequences from “soil” or “freshwater lakes” in a certain region of the world. Since public databases of the International Nucleotide Sequence Database Collaboration (INSDC; comprising DNA Data Bank of Japan (DDBJ), European Nucleotide Archive (EBI-ENA) and GenBank (http://www.insdc.org)) depend on author-submitted information to enrich the value of sequence datasets, we argue that the only way to change the current practice is to establish a standard of reporting that requires contextual data to be deposited at the time of sequence submission. The adoption of such a standard would elevate the quality, accessibility, and utility of information that can be collected from INSDC and the ecosystem of other biological resources.

The GSC has previously proposed standards for describing genomic sequences, the “minimum information about a genome sequence” (MIGS), and metagenomic sequences, the “minimum information about a metagenome sequence” (MIMS)⁴. Here we introduce an extension of these standards for capturing information about marker genes, MIMARKS. Additionally, we introduce “environmental packages” that standardize sets of measurements and observations describing particular habitats that are applicable across all GSC checklists and beyond⁵. We define “environment” as any location in which a sample or organism is found, e.g., soil, air, water, human-associated, plant-associated, or laboratory. The original MIGS/MIMS checklists included contextual
data about the location from which a sample was isolated and how the sequence data was produced. However, standard descriptions for a more comprehensive range of environmental parameters, which would help to better contextualize a sample, were not included. The environmental packages presented here are relevant to any genome sequence of known origin, and would usefully be combined with many projects described by MIGS, MIMS or MIMARKS.

To create a single entry point to all minimum information checklists from the GSC and to the environmental packages, we propose an overarching framework, the MIxS standard [AU: ADD URL]. MIxS is a new standard that includes the technology-specific checklists from the previous MIGS and MIMS standards, provides a way of introducing additional checklists such as MIMARKS, and also allows annotation of sample data using environmental packages. A schematic overview of MIxS along with the MIxS environmental packages is shown in Figure 1.

The development of MIMARKS and the environmental packages

Over the past three decades, the 16S rRNA, 18S rRNA and internal transcribed spacer gene sequences (ITS) from Bacteria, Archaea, and microbial Eukaryotes have provided deep insights into the topology of the tree of life and the composition of communities of organisms that live in diverse environments, which range from deep sea hydrothermal vents to ice sheets in the Arctic. Numerous other phylogenetic marker genes have also proven useful, including RNA polymerase subunits (rpoB), DNA gyrase (gyrB), DNA recombination and repair proteins (recA) and heat shock proteins (HSP70). Marker genes can also reveal key metabolic functions rather than phylogeny; examples
include nitrogen cycling (amoA, nifH, ntcA)17, 18, sulfate reduction (dsrAB)19 or phosphorus metabolism (phnA, phnl, phnJ)20, 21. In this paper we collectively define all of these different phylogenetic and functional genes (or gene fragments) as “marker genes” as they are used to profile natural genetic diversity across the Tree of Life, and argue that a small amount of additional effort invested in describing them with specific guidelines in our public databases will revolutionize the study types that can be performed with these large data resources. This effort is timely, given the need to determine how climate change and various other anthropogenic perturbations of our biosphere are affecting biodiversity, and how marked changes in our cultural traditions and lifestyles are affecting human microbial ecology, and, ultimately, human health.

MIMARKS (Table 1) complements the MIGS/MIMS checklists for genomes and metagenomes by adding two new checklists, a MIMARKS-survey, for uncultured diversity marker gene surveys, and a MIMARKS-specimen, for marker gene sequences obtained from any material identifiable via specimens. The MIMARKS extension adopts and incorporates the standards being developed by the Consortium for the Barcode of Life (CBOL) (http://www.barcodeoflife.org/sites/default/files/legacy/pdf/DWG_data_standards-Final.pdf). Therefore, the checklist can be universally applied to any marker gene, from SSU rRNA to COI, to all taxa, and to studies ranging from single individuals to complex communities.

Both MIMARKS and the environmental packages were developed by collating information from several sources and evaluating it in the framework of the existing MIGS/MIMS checklists. These include four independent community-led surveys,
examination of the parameters reported in published studies, and examination of compliance with optional features in INSDC documents. The overall goal of these activities was to design the backbone of the MIMARKS checklist, which describes the most important aspects of marker gene contextual data.

Results of community-led surveys

To date, four online surveys about descriptors for marker genes have been conducted to determine researcher preferences for core descriptors. The Department of Energy Joint Genome Institute and SILVA\(^2\) surveys focused on general descriptor contextual data for a marker gene, whereas the Ribosomal Database Project (RDP)\(^3\) focused on prevalent habitats for rRNA gene surveys, and the Terragenome Consortium\(^4\) focused on soil metagenome project contextual data (supplementary information 1). The above recommendations were joined by an extensive set of contextual data items suggested by an International Census of Marine Microbes (ICoMM) working group that met in 2005. These collective resources provided valuable insights into community requests for contextual data items to be included in the MIMARKS checklist and the main habitats constituting the environmental packages.

Survey of published parameters

We reviewed published rRNA gene studies, retrieved via SILVA and the ICoMM database MICROBIS (The Microbial Oceanic Biogeographic Information System) (http://icomm.mbl.edu/microbis) to further supplement contextual data items that are included in the respective environmental packages. In total, 39 publications from SILVA and >40 ICoMM projects were scanned for contextual data items to constitute the core of the environmental package sub-tables (supplementary information 1).
Survey of INSDC source feature qualifiers

In a final analysis step, we surveyed usage statistics of INSDC source feature key qualifier values of rRNA gene sequences contained in SILVA (supplementary information 1). Notably, less than 10% of the 1.2 million 16S rRNA gene sequences (SILVA release 100) were associated with even basic information such as latitude/longitude, collection date or PCR primers.

The MIMARKS checklist

The MIMARKS checklist provides users with an “electronic laboratory notebook” containing core contextual data items required for consistent reporting of marker gene investigations. MIMARKS uses the MIGS/MIMS checklists with respect to the nucleic acid sequence source and sequencing contextual data, but extends them with further experimental contextual data such as PCR primers and conditions, or target gene name. For clarity and ease of use, all items within the MIMARKS checklist are presented with a value syntax description, as well as a clear definition of the item. Whenever terms from a specific ontology are required as the value of an item, these terms can be readily found in the respective ontology browsers linked by URLs in the item definition. Although this version of the MIMARKS checklist does not contain unit specifications, we recommend all units to be chosen from and follow the International System of Units (SI) recommendations. In addition, we strongly urge the community to provide feedback regarding the best unit recommendations for given parameters. To facilitate comparative studies, unit standardization across data sets will be vital in future. An Excel® version of the MIMARKS checklist is provided to the community on the GSC web site at:

http://gensc.org/ge_wiki/index.php/MIMARKS.
The MIxS environmental packages

Fourteen environmental packages provide a wealth of environmental and epidemiological contextual data fields for a complete description of sampling environments. Furthermore, the environmental packages can be combined with any of the GSC checklists (figure 1 and supplementary information 2). Researchers within The Human Microbiome Project25 contributed the host-associated and all human packages. The Terragenome Consortium contributed sediment and soil packages. Finally, ICoMM, Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs), and the Max Planck Institute for Marine Microbiology contributed the water package. The MIMARKS working group developed the remaining packages (air, microbial mat/biofilm, miscellaneous natural or artificial environment, plant-associated, and wastewater/sludge). The package names describe high-level habitat terms in order to be exhaustive. The miscellaneous natural or artificial environment package contains a generic set of parameters, and is included for any other habitat that does not fall into the other thirteen categories. Whenever needed, multiple packages may be used for the description of the environment.

Examples of MIMARKS-compliant datasets

Several MIMARKS-compliant reports are included in Supplementary Information 3. These include a 16S rRNA gene survey from samples obtained in the North Atlantic, a 18S pyrosequencing tag study of anaerobic protists in a permanently anoxic basin of the North Sea, a $pmoA$ survey from Negev Desert soils, a $dsrAB$ survey of Gulf of Mexico sediments, and a 16S pyrosequencing tag study of bacterial diversity in the Western English Channel (accessible via SRA study accession number SRP001108).
Adoption by major database and informatics resources

Support for adoption of MIMARKS and the MIxS standard has spread rapidly. Authors of this paper include representatives from genome sequencing centers, maintainers of major resources, principal investigators of large- and small-scale sequencing projects, and individual investigators who have provided compliant datasets, showing the breadth of support for the standard within the community.

In the past, the INSDC has issued a reserved “BARCODE” keyword for the CBOL26. Following this model, the INSDC has recently recognized the GSC as an authority for the MIxS standard and issued it with official keywords within INSDC nucleotide sequence records27. This greatly facilitates automatic validation of the submitted contextual data and provides support for datasets compliant with previous versions by including the checklist version as a keyword.

GenBank accepts MIxS metadata in tabular format using the sequin and tbl2asn submission tools, validates MIxS compliance, and reports the fields in the structured comment block. The EBI-ENA Webin submission system provides prepared web forms for the submission of MIxS compliant data; it presents all of the appropriate fields with descriptions, explanations, and examples, and validates the data entered. One tool that can aid submitting contextual data is MetaBar28, a spreadsheet and web-based software, designed to assist users in the consistent acquisition, electronic storage and submission of contextual data associated with their samples in compliance with the MIxS standard. The online tool CDinFusion (http://www.megx.net/cdinfusion) was created to facilitate the combination of contextual data with sequence data, and generation of submission-ready files.
The next-generation Sequence Read Archive (SRA) collects and displays MIxS-compliant metadata in sample and experiment objects. There are several tools that are already available or under development to assist users in SRA submissions. The myRDP SRA PrepKit allows users to prepare and edit their submissions of reads generated from ultra-high-throughput sequencing technologies. A set of suggested attributes in the data forms assist researchers in providing metadata conforming to checklists such as MIMARKS. The Quantitative Insights Into Microbial Ecology ("QIIME") web application (http://www.microbio.me/qiime) allows users to generate and validate MIMARKS-compliant templates. These templates can be viewed and completed in the users' spreadsheet editor of choice (e.g. Microsoft Excel®). The QIIME web-platform also offers an ontology lookup and geo-referencing tool to aid users when completing the MIMARKS templates. The Investigation/Study/Assay (ISA) is a software suite that assists in the curation, reporting, and local management of experimental metadata from studies employing one or a combination of technologies, including high-throughput sequencing. Specific ISA configurations (available from http://isa-tools.org/tools.html) have been developed to ensure MIxS compliance by providing templates and validation capability. Another tool, ISAconverter, produces SRA.xml documents, facilitating submission to the SRA repository.

Further detailed guidance for submission processes can be found under the respective wiki pages (http://gensc.org/gc_wiki/index.php/MIGS/MIMS/MIMARKS) of the standard.

Maintenance of the MIxS standard

To allow further developments, extensions, and enhancements of MIxS, we set up a
public issue tracking system to track changes and accomplish feature requests

(https://mixs.gensc.org/). New versions will be released annually. Technically, the MIxS
standard, including MIMARKS and the environmental packages, is maintained in a
relational database system at the Max Planck Institute for Marine Microbiology Bremen
on behalf of the GSC. This provides a secure and stable mechanism for updating the
checklist suite and versioning. In future, we plan to develop programmatic access to this
database in order to allow automatic retrieval of the latest version of each checklist for
INSDC databases and for GSC community resources. Moreover, the Genomic Contextual
Data Markup Language (GCDML) is a reference implementation of the GSC checklists
by the GSC and now implements the full range of MIxS standards. It is based on XML
Schema technology and thus serves as an interoperable data exchange format for Web
Service based infrastructures.

Conclusions and call for action

The GSC is an international body with a stated mission of working towards richer
descriptions of the complete collection of genomes and metagenomes through the MIxS
standard. The present report extends the scope of GSC guidelines to marker gene
sequences and environmental packages and establishes a single portal where
experimentalists can gain access to and learn how to use GSC guidelines. The GSC is an
open initiative that welcomes the participation of the wider community. This includes an
open call to contribute to refinements of the MIxS standards and their implementations.
The adoption of the GSC standards by major data providers and organizations, as well as
the INSDC, underlines and seconds the efforts to contextually enrich our sequence data
collection, and complements the recent efforts to enrich other (meta) omics data. The
MIxS standard, including MIMARKS, has been developed to the point that it is ready for
use in the publication of sequences. A defined procedure for requesting new features and
stable release cycles will facilitate implementation of the standard across the community.
Compliance among authors, adoption by journals and use by informatics resources will
vastly improve our collective ability to mine and integrate invaluable sequence data
collections for knowledge- and application-driven research. In particular, the ability to
combine microbial community samples collected from any source, using the universal
Tree of Life as a measure to compare even the most diverse communities, should provide
new insights into the dynamic spatiotemporal distribution of microbial life on our planet
and in/on the human body.
Figure 1

Schematic overview about the GSC MIxS standard (brown), including combination with specific environmental packages (blue). Shared descriptors apply to all MIxS checklists, however each checklist has its own specific descriptors as well. Environmental packages can be applied to any of the checklists. (EU: Eukarya, BA: *Bacteria/Archaea*, PL: Plasmid, VI: Virus, ORG: Organelle).

<table>
<thead>
<tr>
<th>Specification projects</th>
<th>MIGS</th>
<th>MIMS</th>
<th>MIMARKS</th>
<th>New checklists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklists</td>
<td>EU</td>
<td>BA</td>
<td>PL</td>
<td>E.g. pan-genomes</td>
</tr>
<tr>
<td>Shared descriptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>metagenomes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>specimen</td>
<td></td>
</tr>
</tbody>
</table>

New checklists

| Shared descriptors | | | target gene |
| | | | |

collection date, environmental package, environment (biome), environment (feature), environment (material), geographic location (country and/or sea, region), geographic location (latitude and longitude), investigation type, project name, sequencing method, submitted to INSDC

Checklist specific descriptors			
assembly, estimated size, finishing strategy, isolation and growth condition, number of replicons, ploidy, propagation, reference for biomaterial	assembly, estimated size, finishing strategy, isolation and growth condition, number of replicons, ploidy, propagation, reference for biomaterial	assembly, estimated size, finishing strategy, isolation and growth condition, number of replicons, ploidy, propagation, reference for biomaterial	assembly, estimated size, finishing strategy, isolation and growth condition, number of replicons, ploidy, propagation, reference for biomaterial

Applicable environmental packages			
----------------------------------	------	------	
(measurements and observations)			
Applicable environmental packages			

Air
Host-associated
Human-associated
Human-oral
Human-gut
Human-skin
Human-vaginal

Microbial mat/biofilm
Miscellaneous natural or artificial environment
Plant-associated
Sediment
Soil
Wastewater/sludge
Water
<table>
<thead>
<tr>
<th>Investigation</th>
<th>Report type</th>
<th>MIMARKS-survey</th>
<th>MIMARKS-specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted to INSDC [boolean]</td>
<td></td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Investigation type [mimarks-survey or mimarks-specimen]</td>
<td></td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Project name</td>
<td></td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environment</th>
<th></th>
<th>M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic location (latitude and longitude [float, point, transect and region])</td>
<td>The geographical origin of the sample as defined by latitude and longitude. The values should be reported in decimal degrees and in WGS84 system</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Geographic location (depth [integer, point, interval, unit])</td>
<td>Please refer to the definitions of depth in the environmental packages</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Geographic location (elevation of site [integer, unit], altitude of sample [integer, unit])</td>
<td>Please refer to the definitions of either altitude or elevation in the environmental packages</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Geographic location (country and/or sea [INSDC or GAZ]; region [GAZ])</td>
<td>The geographical origin of the sample as defined by the country or sea name. Country, sea, or region names should be chosen from the INSDC list (http://insdc.org/country.html), or the GAZ (Gazetteer, v1.446) ontology (http://bioportal.bioontology.org/visualize/40651)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Collection date [ISO8601]</td>
<td>The time of sampling, either as an instance (single point in time) or interval. In case no exact time is available, the date/time can be right truncated i.e. all of these are valid times: 2008-01-23T19:23:10+00:00; 2008-01-23T19:23:10; 2008-01-23; 2008-01; 2008; Except: 2008-01; 2008 all are ISO8601 compliant</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Environment (biome) [EnvO]</td>
<td>In environmental biome level are the major classes of ecologically similar communities of plants, animals, and other organisms. Biomes are defined based on factors such as plant structures, leaf types, plant spacing, and other factors like climate. Examples include: desert, taiga, deciduous woodland, or coral reef. Environment Ontology (EnvO) (v1.53) terms listed under environmental biome can be found from the link: http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO%3A00000428</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Environment (feature) [EnvO]</td>
<td>Environmental feature level includes geographic environmental features. Examples include: harbor, cliff, or lake. EnvO (v1.53) terms listed under environmental feature can be found from the link: http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO%3A00002297</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Environment (material) [EnvO]</td>
<td>The environmental material level refers to the matter that was displaced by the sample, prior to the sampling event. Environmental matter terms are generally mass nouns. Examples include: air, soil, or water. EnvO (v1.53) terms listed under environmental matter can be found from the link: http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO%3A00010483</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

MIGS/MIMS/MIMARKS Extension

| Environmental package | MIGS/MIMS/MIMARKS extension for reporting of measurements and observations obtained from one or more of the environments where the sample was obtained. All environmental packages listed here are further defined in separate subtables. By giving the name of the environmental package, a selection of fields can be made from the subtables and can be reported | M | M |

Nucleic acid sequence source

| Isolation and growth conditions [PMID, DOI, or URL] | Publication reference in the form of pubmed ID (PMID), digital object identifier (DOI), or URL for Isolation and growth condition specifications of the organism/material | - | M |

Sequencing

| Target gene or locus (e.g. 16S rRNA, 18S rRNA, nif, amoA, rpo) | Targeted gene or locus name for marker gene study | M | M |
| Sequencing method (e.g. dideoxysequencing, pyrosequencing, polony) | Sequencing method used; e.g. Sanger, pyrosequencing, ABI-solid. | M | M |
Table 1. Items for the MIMARKS specification and their mandatory (M), conditionally mandatory (C) (the item is mandatory only when applicable to the study) or recommended (X) status for both MIMARKS-survey and MIMARKS-specimen checklists. Furthermore, “-” denotes that an item is not applicable for a given checklist. “E” denotes that a field has environment-specific requirements. For example, while “depth” is mandatory for environments water, sediment or soil; it is optional for human-associated environments. MIMARKS-survey is applicable to contextual data for marker gene sequences, obtained directly from the environment, without culturing or identification of the organisms. MIMARKS-specimen, on the other hand, applies to the contextual data for marker gene sequences from cultured or voucher-identifiable specimens. Both MIMARKS-survey and specimen checklists can be used for any type of marker gene sequence data, ranging from 16S, 18S, 23S, 28S rRNA to COI, hence the checklists are universal for all three domains of life.

Item names are followed by a short description of the value of the item in parentheses and/or value type in brackets as a superscript. Whenever applicable, value types are chosen from a controlled vocabulary (CV), or an ontology from the Open Biological and Biomedical Ontologies (OBO) foundry (http://www.obofoundry.org). This table only presents the very core of MIMARKS checklists, i.e. only mandatory items for each checklist. Supplementary information 2 in spreadsheet format contains all MIMARKS items, the tables for environmental packages in the MIGS/MIMS/MIMARKS extension, and GenBank structured comment name that should be used for submitting MIMARKS data to GenBank. In case of submitting to EBI/ENA the full names can be used.