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Abstract Measurements of late springtime nutrient concentrations in Arctic waters are relatively rare due
to the extensive sea ice cover that makes sampling difficult. During the SUBICE (Study of Under-ice Blooms In
the Chukchi Ecosystem) cruise in May-June 2014, an extensive survey of hydrography and prebloom
concentrations of inorganic macronutrients, oxygen, particulate organic carbon and nitrogen, and
chlorophyll a was conducted in the northeastern Chukchi Sea. Cold (<—1.5°C) winter water was prevalent
throughout the study area, and the water column was weakly stratified. Nitrate (NO3 ™) concentration
averaged 12.6 + 1.92 uM in surface waters and 14.0 + 1.91 pM near the bottom and was significantly
correlated with salinity. The highest NO3;™ concentrations were associated with winter water within the
Central Channel flow path.NO3™ concentrations were much reduced near the northern shelf break within the
upper halocline waters of the Canada Basin and along the eastern side of the shelf near the Alaskan coast.
Net community production (NCP), estimated as the difference in depth-integrated NO3;~ content between
spring (this study) and summer (historical), varied from 28 to 38 g C m~2a~". This is much lower than
previous NCP estimates that used NO3; ™ concentrations from the southeastern Bering Sea as a baseline. These
results demonstrate the importance of using profiles of NO;~ measured as close to the beginning of the
spring bloom as possible when estimating local NCP. They also show that once the snow melts in spring,
increased light transmission through the sea ice to the waters below the ice could fuel large phytoplankton
blooms over a much wider area than previously known.

1. Introduction

The Chukchi Sea sector of the Arctic Ocean is characterized by its broad and shallow continental shelf, inflow of
water from the Bering Sea through Bering Strait (Woodgate et al., 2006), and seasonal but diminishing sea ice
cover (Arrigo & Van Dijken, 2015). As a result of this loss of sea ice, phytoplankton abundance and rates of net
primary production in the Chukchi Sea have increased by 20-30% in recent years, both in open water (Arrigo &
Van Dijken, 2015; Belanger et al., 2013) and likely beneath the sea ice (Arrigo et al., 2012, 2014; Zhang et al., 2015).

The high productivity of the Chukchi Sea is maintained by the primarily northward flow of water through
Bering Strait (Woodgate et al., 2006). Subsequent circulation on the Chukchi Sea shelf is controlled by bathy-
metry (Spall, 2007; Weingartner et al., 2005), with three primary flow pathways carrying water northward from
the Bering Sea through Bering Strait (Figure 1) (Coachman et al., 1975; Spall, 2007; Weingartner et al., 2005;
Winsor & Chapman, 2004). The western branch contains a large amount of nitrate-rich (~20 uM) Anadyr
Water (Sambrotto et al., 1984) and flows through Herald Canyon before exiting either to the north off the
shelf break into the Canada Basin or to the east through Barrow Canyon (Weingartner et al., 2005; Winsor
& Chapman, 2004). The eastern branch, referred to in summer as the Alaskan Coastal Current, is positioned
relatively close to the coast and transports warm, fresh, but nutrient-poor Alaskan Coastal Water that
originated in the Bering Sea and Gulf of Alaska (Cooper et al., 1997; Springer & McRoy, 1993; Walsh et al.,
1989). The central branch flows between Herald Shoal and Hanna Shoal (through Central Channel) and trans-
ports a combination of Bering Shelf Water and Anadyr Water (Cooper et al.,, 1997; Hansell et al., 1993). These
waters eventually migrate toward the Canada Basin (Lowry et al., 2015; Zhang et al., 2010), although some
nutrients are regenerated locally on the shallow shelf (Codispoti et al., 2005).

By late spring or summer, the availability of nutrients in the northern Chukchi Sea, particularly dissolved inor-
ganic nitrogen such as nitrate (NO3 ) and ammonium (NH,*), is generally restricted to subsurface reservoirs
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Figure 1. Map of the SUBICE study region showing the stations used in the

study (black squares) overlaid on the concentration of chlorophyll a in

open water and sea ice (calculated from the sea ice algorithm of Cavalieri

et al. (1996)) on 15 June 2014. A schematic representation of the main

flow paths of Pacific origin water on the Chukchi Shelf based on historical
measurements are included (grey lines). The solid purple line denotes the

1000 m isobath.

of winter water (WW), which eventually limits phytoplankton growth
(Codispoti et al., 2009; Cooper et al., 1997; Danielson et al., 2017; Lowry
et al., 2015). This important summer nutrient resource is associated with
the slower interior shelf pathways where WW has not yet flushed off the
Chukchi Shelf into the Canada Basin (Lowry et al., 2015; Pickart et al.,
2016). Farther south within the Chukchi Sea, open water blooms can
remain prominent in spring and summer in waters exposed to
nutrient-rich summertime Anadyr Water that enters through Bering
Strait (Wang et al., 2005).

As phytoplankton deplete surface waters of nutrients, their growth
rates at the depth of the nutricline eventually exceed those in near-
surface waters, despite lower light levels. High ultraviolet radiation
fluxes can also reduce algal growth in near-surface waters (Hessen
et al, 2012). The result is that over the growth season, phytoplankton
populations move deeper in the water column as light increases and
the nitricline is progressively depressed, often forming a distinct sub-
surface chlorophyll maximum at depths of 20-40 m (Brown et al,
2015a; Danielson et al, 2017; Martin et al., 2010). Measurements of
this progressive depletion of nutrients in surface waters have been
used to estimate net community production (NCP), a quantity approxi-
mately equivalent to new production when the nutrient of interest is
NOs™ (Eppley & Peterson, 1979).

However, obtaining accurate estimates of NCP has been hampered by
our poor understanding of prebloom baseline NO3™ distributions on
the Chukchi Shelf. The vast majority of nutrient data for this region
has been collected during the summer and fall months when nutrient
concentrations in surface waters are already reduced to growth-
limiting levels (Codispoti et al., 2013; Danielson et al., 2017). The hand-
ful of nutrient samples obtained in the spring when substantial
amounts of sea ice are still present suggest that the Chukchi Shelf is
relatively well mixed prior to the initiation of the spring bloom, but
the spatial coverage of these samples is extremely limited (Codispoti
et al,, 2005, 2009).

Here we present hydrographic data collected during the Study of
Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May-
June 2014 (Figure 1). This is the most spatially extensive data set on

prebloom nutrient distributions in the ice-covered northeastern half of the Chukchi Sea collected to date
and can be used (1) to better understand nutrient cycling on the Chukchi Shelf, (2) to more accurately assess
the relationships between WW, nutrients, and flow pathways, and as a baseline from which (3) to more accu-
rately estimate net community production (NCP).

2. Methods

The SUBICE field campaign was conducted in the Chukchi Sea aboard United States Coast Guard Cutter
(USCGCQ) Healy from 13 May to 23 June 2014. During the field expedition, the SUBICE team sampled the water
column at 230 hydrographic stations, primarily on the continental shelf of the northeastern Chukchi Sea
(Figure 1). Here we focus on 108 prebloom stations that were sampled within the ice pack during the early
part of the cruise (18 May to 13 June). At each station, conductivity-temperature-depth (CTD) casts were
made using dual temperature (SBE3), conductivity (SBE4c), and pressure (Digiquartz 0-10,000 psi) sensors
attached to the 30 L, 12-position Niskin bottle rosette system. The CTD sensors underwent laboratory calibra-
tions before and after the cruise, with calculated uncertainties of 0.001°C for temperature and 0.008 for sali-
nity. Additional sensors on the rosette included dissolved oxygen (SBE43), photosynthetically active radiation
(Biospherical QSP-2300), and fluorescence (WET Labs ECO-AFL/FL).
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floor. Nutrient analyses were performed on board the ship with a
Seal Analytical continuous flow Auto-Analyzer 3 using a modification
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Figure 2. Potential temperature versus salinity diagram for stations shown chlorophyll @ (Chl a) concentration, seawater was filtered onto
in Figure 1. Colors denote nitrate concentration. MW = meltwater, 25 mm Whatman glass fiber filters (GF/F, 0.7 um nominal pore size).
NVWW = newly ventilated winter water, and RWW = remnant winter water. Filters were extracted in the dark in 5 mL of 90% acetone for 24 h at

+3°C prior to measurement (Holm-Hansen et al., 1965) on a Turner

Designs 10-AU fluorometer calibrated with pure Chl a (Sigma-
Aldrich). Particulate organic carbon and nitrogen (POC and PON) samples were filtered through precom-
busted 25 mm GF/Fs. Blank filters were made daily by passing ~25 mL of filtered (0.2 um) seawater through
GF/Fs and processing them the same as for the particulate samples. All filters were immediately dried at
60°C and stored dry until processing. Prior to analysis, samples were fumed with concentrated HCl, dried
in a low-temperature oven at 60°C, and packed into tin capsules (Costech Analytical Technologies, Inc.)
for analysis. Samples were analyzed on an Elementar vario EL cube or MICRO cube elemental analyzer
(Elementar Analysensysteme GmbH, Hanau, Germany) which was interfaced to a PDZ Europa 20-20
isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK). Calibration standards were glutamic acid and
peach leaves.

The calculation of NCP from nutrient deficits assumes that water masses move as a single parcel. Thus, at any
particular location, surface water NO3™ concentrations at the time of sampling are a function of initial starting
values in early spring before the phytoplankton bloom begins and any phytoplankton uptake that has taken
place since that time. Water that advects into the Chukchi Sea during spring/summer will have its own NO3™
depletion signature resulting from NCP that took place outside our study region and would cause an overes-
timation of local NCP. However, because the residence time on the shelf (Spall, 2007; Winsor & Chapman,
2004) is longer than the phytoplankton bloom, this error is likely to be small (see section 5 below). NCP
was calculated by using our prebloom NOs;™ concentration profiles on the Chukchi Shelf as a baseline and
using data from historical summer cruises (Arrigo et al., 2014; Codispoti et al., 2005, 2009; Danielson et al.,
2017; Lowry et al.,, 2015; Mills et al., 2015) to the region to determine the depth of the nitricline, then assuming
that NO3;™ concentrations above that depth were reduced to zero. The vertical integral of NOs™ depletion
was then assumed to be equal to NCP, which was converted to carbon (C) units assuming a molar C:N uptake
ratio of 6.0 to be consistent with previous estimates by Hansell et al. (1993).

3. Prebloom Hydrography

Most of the SUBICE study was conducted in shallow (40-50 m) continental shelf waters that were covered by
1.0-1.5 m of sea ice and 0.02-0.15 m of snow. Sea ice concentrations were determined by 2-hourly ship
observations and passive microwave satellite data at each station during our study and were all approxi-
mately 100% (Figure 1). The surface melt ponds that are common in this area in summer (Arrigo et al.,
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Figure 3. Three-dimensional sections of (a) potential temperature, (b) sali-
nity, and (c) nitrate concentration for a subset of the SUBICE station grid.
Only stations sampled early in the season prior to appreciable phytoplankton
growth have been included. Graphics created using Ocean Data View

and Ocean3D.

2014) were absent during our study due to persistently subfreezing air
temperatures (see also Pacini et al.,, 2016).

Over much of the northeast Chukchi Shelf, seawater temperature and
salinity fell within a narrow range of —1.78°C to —1.55°C and 32 to 33,
respectively (Figure 2), demonstrating that in the late spring, the shelf
is composed almost exclusively of WW (Carmack, 2000). At the northern-
most stations sampled near the shelf break, waters were similarly cold
but much fresher (salinity of 30.5 to 32) than on the shelf, indicating
the presence of early-season meltwater and/or low-salinity coastal or
Canada Basin waters that had advected into the sampling region
(MW). Remnant winter water (RWW) was also found seaward of the shelf
break. This water mass is one of the main constituents of the cold halo-
cline of the Canada Basin (Anderson et al., 2013). In the southern part of
our study domain, beneath the pack ice, the water was close to the
freezing point over a range of salinities. This is referred to as newly ven-
tilated winter water (NVWW), having been formed during the preceding
winter. Temperature (Figure 3a) and salinity (Figure 3b) sections indicate
that shelf waters were two layered but weakly stratified in most areas.

Mean oxygen saturation (80-85%) and concentrations of Chl a
(<1 mg m~3), POC (<60 mg m~3), and PON (<70 mg m ) were gener-
ally low on the shelf beneath the ice, indicating that the phytoplankton
bloom had not yet begun in waters beneath the sea ice during the early
part of the cruise.

Nitrate (NO3~) concentrations under the ice exceeded 8 puM virtually
everywhere on the shelf and were highly correlated with salinity
(Figure 4, R = 0.84), except for the far eastern and northern regions of
our study area where nutrient concentrations were very low in the basin
and near the coast (Figure 3c). Over much of the shelf, the weakly stra-
tified water column had surface and near-bottom NO3;™ concentrations
that averaged 12.6 + 1.92 puM and 14.0 + 1.91 uM, respectively.
Concentrations of PO,>~ and Si(OH), exhibited spatial patterns (not
shown) similar to that of NO3~, with mean springtime concentrations
of 1.86 + 0.15 and 48.5 + 5.59 pM, respectively, on the shelf. NH,* con-
centrations on the Chukchi Sea shelf were also relatively high but spa-
tially more variable than other nutrients, averaging 1.57 + 0.51 uM.
The mean N03_:PO43_ and NO;s :Si(OH), ratios in our study region
were 9.16 and 0.27, respectively. These prebloom nutrient ratios are
consistent with those measured in near-bottom shelf waters later in
the season, prior to the depletion of NOs;™ in surface waters that
marks the end of the spring bloom (Codispoti et al., 2009, 2013;
Cooper et al,, 1997; Danielson et al, 2017), and are indicative of a
NO3 ™ -limited system.

The only other available springtime data that we are aware of to which
we can compare these NOs~ concentrations were made during the
Shelf Basin Interaction (SBI) program in 2002 and 2004 (Codispoti

et al., 2005, 2009). Only a few stations were sampled during SBI in the month of May up on the continental
shelf away from the shelf break (Figure 5), but reported NO3 ™ concentrations were in good agreement with
our measurements made at a similar time and place during SUBICE. Vertical profiles show that NO3™ con-
centrations during SBI were generally uniform with depth and ranged from 10 to 15 uM within our study
region. There was also some evidence of slight near-bottom enhancement of NO3;~ concentration
(Figure 5), similar to what we observed during SUBICE. Salinity versus NO3™ regressions from both studies
suggest that NO3;~ concentration might have been slightly higher during SUBICE than during SBI, with
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R =0.84, p < 0.001). Light black lines are the regressions of nitrate versus salinity

for three different years (and all 3 years combined) from the southeastern
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Figure 5. Nitrate profiles obtained on the Chukchi Sea shelf in May of 2002 and

2004 during the Shelf-Basin Interactions program. Inset map shows station
locations and bathymetry.

NO3™ concentrations at a salinity of 33 for the two studies of 16.4
and <15, respectively (Codispoti et al., 2005, 2009).

Although springtime NOs~ concentrations were high almost
everywhere on the shelf during SUBICE, those along the main flow
paths across the Chukchi Sea shelf (e.g., the Central Channel jet),
which were identified based on ADCP data, were generally 3-
5 puM higher than concentrations in the surrounding areas
(Figure 3c). Consistent with previous studies (Pickart et al., 2016;
Weingartner et al,, 2013), we found that the Central Channel path-
way is augmented by flow from the west (likely from Herald
Canyon) and, upon encountering Hanna Shoal, the pathway bifur-
cates. Maximum velocities within these jets (0.20-0.25 m s~ ') are
higher than velocities over the rest of the shelf and carry a higher
fraction of high NO3; ™ Anadyr Water from the Bering Sea, consistent
with their relatively high salinity (Figure 3b) (salinity = 32.5-33.0)
(Coachman et al., 1975). However, in the waters adjacent to the jets,
NO3~ concentrations were also generally in excess of 10 pM.
Convective overturning was likely taking place during our survey
within small leads in the pack ice, as demonstrated by Pacini et al.
(2016) who used a polynya model in conjunction with a 1-D mixing
model to show that the water column on the interior shelf would
overturn in a matter of hours subject to the observed air-sea forcing
during the first part of our survey. This implies that the convective
mixing would stir regenerated nutrients from the seafloor into the
upper water column. Hence, the generally high NO;™~ concentra-
tions observed throughout our study region, including those out-
side of the main flow pathways, indicate that local NOs™ sources
augment the nutrients that are transported through Bering Strait.

4, Estimates of NCP

Surface water concentrations of NO3~, PO,3~, and Si(OH), on the
Chukchi Shelf measured in spring during SUBICE were much higher
than those measured later in the season in the same region (Arrigo
et al, 2014; Codispoti et al, 2005, 2009; Danielson et al., 2017;
Hansell et al., 1993; Lowry et al., 2015), due to nutrient assimilation
by phytoplankton during the summer blooms. Therefore, the hori-
zontal distribution of prebloom NOs;~ concentrations measured
during SUBICE can be used with nitricline depth measured later in
the season to determine minimum estimates of NCP on the
Chukchi Sea shelf (they are minimum estimates because they
do not account for possible additions of NO3™ to the system dur-
ing the growing season). Summer cruises to the Chukchi Sea have
shown that NOs ™ is fully depleted by phytoplankton down to an
average depth of 30 m by mid-July, even in areas where sea ice
concentration was near 100% (Arrigo et al, 2012, 2014; Brown
et al, 2015a; Danielson et al, 2017; Lowry et al, 2015; Varela
et al., 2013). Given the prebloom NOs3;~ concentrations we mea-
sured in the upper 30 m, this yields a mean NCP estimate
of 278 +413gCm2a .

Because phytoplankton growth and nutrient consumption con-
tinue to erode the nitricline after mid-July (Brown et al., 20153;
Codispoti et al, 2005), the above value for NCP probably
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underestimates the annual value. Therefore, we also computed NCP from our prebloom NO3 ™ data using two
further assumptions, (1) that NO3~ was completely consumed within the upper 40 m of the water column
during summer and (2) that NOs;~ was completely consumed throughout the entire ~50 m water column
(this represents an unlikely, but maximum possible, estimate for local NCP from NOs™ deficits). Our data sug-
gest that if the nitricline were to deepen to 40 m, time- and depth-integrated NCP would increase by 35% to
376 +559gCm 2a . If prebloom NOs ™~ is fully consumed throughout the water column on the shallow
shelf, NCP only increases by another 12.5%, t0 42.3 + 6.89 g Cm~2a™'. These mean estimates of NCP do not
include the low values measured in the northern Chukchi Sea near the shelf break (5-20 g Cm~2a™") that are
associated with the persistently low NO3;™~ waters of the Canada Basin (Codispoti et al., 2013).

Our NCP values are on the low end of previous estimates for the southern (40-70 g Cm~2a~ ') and western
(70 g C m™2) Chukchi Sea (Codispoti et al., 2013; Hansell et al., 1993; Mills et al., 2015) made using the same
approach. Given the relatively low sensitivity of the NCP calculation to the nitricline depth, the primary reason
for these NCP differences is that previous studies assumed higher prebloom NO3;™ concentrations than those
used here that were based either on a small amount of data collected in the Chukchi Sea (Mills et al., 2015) or
measurements from far upstream in the Bering Sea (Hansell et al.,, 1993). For example, Hansell et al. (1993)
estimated NCP using prebloom NO3 ™ values that were calculated from a regression between NO3;™ concen-
tration and salinity obtained for waters of the southeastern Bering Sea. This regression yielded a NO3 ™~ con-
centration of 23.2 uM at a salinity of 33, much higher than the mean prebloom value of 16.4 uM NOs~ we
measured at that same salinity on the northeastern Chukchi Sea shelf (Figure 4). Because both of our studies
assume complete nutrient depletion down to the nitricline by the end of summer, the higher initial NO3™
concentrations in Hansell et al. (1993) would yield larger NO; ™ deficits and thus greater estimates of NCP
in the southern and western Chukchi Sea.

5. Considerations for Measuring NCP From Nutrient Deficits

There are three difficulties inherent in estimating local NCP from measured nutrient deficits on an inflow shelf
like the Chukchi Sea (Carmack & Wassmann, 2006). First, it is difficult to define prebloom NO3™ concentra-
tions because of interannual differences in relative amounts of nutrient-rich Anadyr Water and nutrient-poor
Alaskan Coastal Water entering the Chukchi Sea and their spatial redistribution on the shelf. This water mass
variability is linked to interannual differences in the prevailing wind fields (Danielson et al., 2017) and likely
alters prebloom nutrient inventories on the Chukchi Sea shelf. While interannual variability in prebloom
NO3™~ concentration explains some of the difference between the two NCP estimates, its role is probably
small because SUBICE values for WW NO3 ™ are consistent with WW values published previously for the same
area of the Chukchi Sea in 2002 and 2004 (Figure 5) and in 2010 and 2011 (Lowry et al., 2015; Mills et al., 2015).
This suggests that spatial differences in prebloom NO3™ between the Chukchi Sea and Bering Sea shelves
have a larger impact on the estimate of NCP than interannual variability in prebloom NOs;™ within the
Chukchi Sea.

Second, N-cycle processes other than phytoplankton uptake alter inventories of NO3 ™ as water flows over the
shallow Bering and Chukchi Sea shelves. Much of the 6.8 uM difference in prebloom NOs;™ concentration at a
salinity of 33 between Anadyr Water in the southeastern Bering Sea (23.2 uM) and on the Chukchi Sea shelf
(16.4 uM) is likely due to an imbalance between the processes that alter NO3™ concentrations during transit
between the two regions. For example, the microbial conversion of NO3 ™ to nitrogen gas via sediment deni-
trification results in a significant loss of fixed N on both the Bering and Chukchi Sea shelves (Chang & Devol,
2009; Devol et al., 1997; Granger et al., 2011; Haines et al., 1981; Koike & Hattori, 1979; Mills et al., 2015; Tanaka
et al,, 2004). Furthermore, the sediments of the Bering and Chukchi Sea are sites of active coupled partial
nitrification-denitrification (Granger et al., 2011), while the deeper portions of the water column are sites of
nitrification (Brown et al.,, 2015b; Hartnett, 1998; Henriksen et al.,, 1993), resulting in the regeneration of
NOs~ from ammonified organic N. The net 6.8 uM decrease in NO3~ between the Bering and Chukchi
Seas indicates that losses of NO3 ™ through denitrification outweigh the gains from nitrification, which must
be accounted for when estimating NCP using nonlocal prebloom NOs™ values.

Finally, estimation of local NOs ™ deficits is complicated by the continued inflow of waters carrying NO3™ def-
icit signals into the northeastern Chukchi Sea from phytoplankton blooms within ice-free waters to the south,
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either in the northern Bering Sea (Brown et al.,, 2015b) or the southern Chukchi Sea (Figure 1). The same is true
for NO3 ™ -depleted waters from the Canada Basin that are transported onto the Chukchi Shelf through upwel-
ling (Aagaard & Roach, 1990; Bourke & Paquette, 1976; Pickart et al., 2009). During our SUBICE cruise, we first
observed NO3 ™ -depleted waters beneath fully consolidated sea ice and snow in the narrow but rapidly flow-
ing midshelf jet that had penetrated into the sea ice zone, reaching as far north as 71.4°N by 18 June. While
adjacent areas of the shelf were much less impacted, advection of this reduced NO3™ water into our study
region will markedly alter estimates of local NCP.

Clearly, estimates of initial NOs™ concentrations used in NCP calculations for a given region should be based
on local profiles of NO3;~ measured as close to the beginning of the spring bloom as possible. How close
depends on the length of phytoplankton bloom relative to the residence time of water on the Chukchi Sea
shelf. If the phytoplankton bloom is short lived relative to the residence time of NO3 ™ on the shelf, then pre-
bloom NOs™ can be measured either earlier in the season or farther upstream to obtain accurate estimates of
NCP. Satellite ocean color data show that the amount of time it takes for phytoplankton in the Chukchi Sea to
increase from prebloom to peak bloom Chl a concentrations is approximately 1 month (Arrigo & Van Dijken,
2011). Given that the timing of peak biomass during a bloom generally coincides with the exhaustion of sur-
face NO3™ (Alkire et al., 2012) the relevant timescale for measuring NCP on the Chukchi Sea shelf is approxi-
mately 1T month. This is because any phytoplankton growth after this time would be dependent on recycled
nutrients and therefore would not contribute to NCP.

Based on numerical models of the Chukchi Sea (Spall, 2007; Winsor & Chapman, 2004), the residence time of
Pacific water within our study domain on the northeast shelf is anywhere from a couple of months to a half
year, substantially longer than the length of the phytoplankton bloom and largely dependent on the wind
speed and direction. For example, strong northeasterly winds can temporarily reverse the flow on the shelf
from the north to the south (Pickart et al, 2011), substantially lengthening the mean residence time
(Winsor & Chapman, 2004). The assumption used above to compute the NCP is that the water remains largely
stationary for the 2 month period between mid-May and mid-July. The climatological mean winds during this
time of year tend to be moderately out of the northeast (Lin et al., 2016), which suggests an average resi-
dence time in the middle of the range suggested by the above models of ~4 months. This is consistent with
the observations of Nobre et al. (2016), who suggest that the last of the WW exits the Chukchi Shelf through
Barrow Canyon by early September, giving a flushing time of 3.5 months (mid-May to early September) for
our domain. This, in turn, implies that up to 50% of the water typically sampled in our study region in mid-
July emanated from south of the domain.

6. Conclusions

Given the relatively short duration of the phytoplankton bloom and the longer residence time for water on
the shelf, our results suggest that accurate estimates of NCP in the northeastern Chukchi Sea require pre-
bloom measurements of NOs; ™~ from no farther away than the southern portion of the Chukchi Sea. While
such measurements are currently lacking, there is little reason to think that the NOs ™~ levels there would
be substantially different from those we measured during SUBICE. Fortunately, future cruises to the
Chukchi Sea by the international research community, perhaps as part of the ongoing Distributed
Biological Observatory program (Grebmeier et al., 2010, 2015), should increase the number of prebloom
nutrient samples available for assessment of NCP and other biogeochemical processes in this highly produc-
tive and rapidly changing sector of the Arctic Ocean.

The high prebloom nutrient concentrations observed throughout the northeastern Chukchi Sea shelf during
SUBICE provide critical information for evaluating the potential of these shelf systems to support phytoplank-
ton growth under both ice-free and ice-covered conditions. Recent cruises to the same general area as that
sampled during SUBICE demonstrated that phytoplankton could attain extremely high concentrations
beneath the sea ice on the Chukchi Sea shelf (Arrigo et al., 2012, 2014). Obviously, these intense underice
phytoplankton blooms required high prebloom nutrient concentrations to reach the extraordinary biomass
levels that were observed (Zhang et al., 2015). However, there was little information about prebloom nutrient
inventories at that time, so the possible extent of these blooms had been impossible to determine. Results
presented here show that ice-covered waters throughout most of the northeastern Chukchi Sea have suffi-
cient prebloom nutrients to support widespread growth of phytoplankton beneath the sea ice, consistent
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with previous modeling results (Zhang et al., 2015). Therefore, once the snow melts and melt ponds form in
spring, increased light transmission through the sea ice to the waters below the ice (Frey et al., 2011) could
fuel large phytoplankton blooms over a much wider area than previously thought. The ecological implica-
tions of these blooms are currently unknown but are likely to be substantial.
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