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Hong et al. (Reports, 5 May 2017, p.527) suggested that previous studies of the
biogeochemically-significant marine cyanobacterium Trichodesmium showing
increased growth and nitrogen-fixation at projected future high CO, levels
suffered from ammonia or copper toxicity. They reported rates instead decrease
at high CO, when contamination is alleviated. We present and discuss results of

multiple published studies refuting this toxicity hypothesis.

Marine nitrogen-fixing cyanobacteria are important to the global carbon cycle and
climate, as they provide vital new nitrogen supplies that allow phytoplankton to draw down
atmospheric carbon dioxide (CO,). Many experiments over the last decade have predicted that

the globally-distributed tropical cyanobacterium Trichodesmium spp. will grow faster and fix 30-



60% more nitrogen under projected future doubled seawater CO, concentrations [1-6]. Such
CO; fertilization of marine nitrogen-fixation could potentially provide a negative feedback on
anthropogenic CO, emissions [2,5,6].

Hong et al. [7] argue that these often-reproduced results actually stem from chemical
contamination of the widely used Trichodesmium artificial seawater culture-medium YBCII. A
bad batch of MgCl, reagent used in their medium preparation led to contamination of their
YBCII with ~20 umol/L of growth-inhibiting ammonia. They speculate that accidental
contamination with toxic copper is also likely, although no copper measurements are presented
to support this contention. As evidence, they present experiments showing that growth and
nitrogen-fixation rates increase when ammonia-free MgCl, is used to prepare YBCII, or when
Trichodesmium are grown with higher levels of the trace metal chelator EDTA to bind and
detoxify putative copper contamination. Crucially, they also found that the commonly observed
CO, stimulation of Trichodesmium nitrogen-fixation and growth appears to be reversed in their
‘uncontaminated’ media. They therefore attribute the opposing results seen in nearly all prior
studies to ubiquitous, previously unrecognized contamination artifacts [7].

This contamination-artifact hypothesis can however be conclusively refuted by
examining published studies. Although Hong et al. state that “All previous laboratory studies
that have reported positive... effects of acidification... have been carried out with... the growth
medium YBCILI...” [S.1.,7], in fact several Trichodesmium studies found large positive effects of
high CO; in the same ammonia-free, trace-metal clean ‘Aquil-tricho’ medium they advocate

[5,6,8]. Additionally, previous CO, experiments in both putatively ‘contaminated’ YBCIl and in



Aquil-tricho measured Trichodesmium nitrogen-fixation rates that were as high as (or even

higher than) the rates measured by Hong et al. in their ‘uncontaminated’ medium preparations

(Fig. 1). We employ our own ~—’: 20
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ammonia inhibition in nitrogen-fixing cyanobacteria [11,12], and our measurements show that
ammonia concentrations in both YBCII and Aquil-tricho are typically below detection limits (<

~0.5 umol/L).



Also contradicting the toxic-contamination hypothesis is a study that examined seven
different nitrogen-fixing cyanobacteria isolates grown across a range of CO, concentrations in
Aquil-tricho medium [5]. In every case, Trichodesmium nitrogen-fixation rates closely fit a
classic saturation-curve model relative to CO, (r2 = 0.95-1.00); one of these data sets is shown in
Fig 2, along with the corresponding Michaelis-Menten enzyme kinetics equation. This strikingly
nutrient-like response to a CO, concentration gradient cannot be explained by invoking an
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CO;, concentrations, where Hong et al. purport they should again be inhibited due to
contaminants. This unique adaptive response is again wholly inconsistent with toxic inhibition.

Despite this contrary evidence strongly suggesting that culture-medium toxicity is
irrelevant to the results of most previous studies, we are still left with the puzzling observation
that Hong et al. recorded growth rates that were ~25% higher than other published rates [7] -
even though the nitrogen-fixation rates supporting this rapid growth were similar to, or less
than, those in previous studies (Fig. 1). However, this discrepancy is difficult to evaluate, as
pertinent details are missing from their growth rate methods text. Although this is a relatively
basic analysis, in the case of Trichodesmium the protocol chosen is critical. Nitrogen and carbon
fixation and growth in this species follow a pronounced diel rhythm [3,4,6], so most cell division
occurs in the afternoon. One can thus calculate anomalously elevated growth rates similar to
those reported by Hong et al., simply by measuring them solely from early morning until late in
that (or a subsequent) afternoon. These high growth rates will however retreat to widely
published values if experiments are properly sampled over an exact 24-h diel cycle.
Unfortunately, this specific information was not provided, as it may have helped to explain why
growth rates and other aspects of their study are inconsistent with previous Trichodesmium
work, including shifts in diel nitrogen-fixation patterns under elevated CO,; [4-6], and trends in
the abundance of many key proteins in iron-limited and high-CO,-grown cells [8,13].

We agree with Hong et al. [7] that iron limitation negates the positive effects of high CO,
on nitrogen fixers. We observe similar iron-limited rates at high and low CO,, however, rather

than preferential inhibition by elevated CO, [8,14]. Although iron limitation indisputably



constrains nitrogen-fixation in much of the current ocean, increased aerosol iron supplies
resulting from climate change and anthropogenic pollution may partially alleviate this limitation
in the future ocean [15].

In conclusion, we certainly concur with Hong et al. [7] that the effects of high CO, and
attendant ocean acidification on Trichodesmium are complex, and we applaud them for alerting
researchers to potential reagent contamination. It is clearly unwarranted, however, to project
an unfortunate contamination problem in one laboratory onto a large, robust, and consistent
body of research with important implications for changing ocean ecosystems. The reason that
Hong et al. obtain results diametrically opposed to those of nearly every other similar study
remains to be determined, but the evidence does not support the suggestion that this is

because all other experiments are universally contaminated.
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