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Abstract 32 

Common and roseate terns are migratory piscivorous seabirds with major breeding colonies 33 

within feeding range of the PCB-contaminated New Bedford Harbor (NBH, MA, USA) 34 

Superfund site. Our longitudinal study shows that before PCB discharges into NBH ceased (late 35 

1970s), tern eggs had very high but variable PCB concentrations. But egg concentrations of 36 

PCBs as well as DDE, the degradation product of the ubiquitous global contaminant DDT, have 37 

since declined. Rate constants for temporal decline of PCB congeners in tern eggs varied 38 

inversely with log10KOW (n-octanol-water partition coefficient), shifting egg congener patterns 39 

away from those characterizing NBH sediment. To estimate the toxic effects on tern eggs of PCB 40 

dioxin-like congener (DLC) exposures, we extrapolated published laboratory data on common 41 

terns to roseate terns by characterizing genetic and functional similarities in species aryl-42 

hydrocarbon receptors (AHRs), which mediate DLC sensitivity. Our assessment of contaminant 43 

risks suggests that terns breeding near NBH were exposed historically to toxic levels of PCBs 44 

and DDE; however, acute effects on tern egg development have become less likely since the 45 

1970s.  Our approach demonstrates how comparative genetics at target loci can effectively 46 

increase the range of inference for chemical risk assessments from tested to untested and 47 

untestable species. 48 

 49 

Introduction 50 

In 1982, New Bedford Harbor (NBH), Massachusetts, USA, was placed on the National 51 

Priorities List for cleanup under Superfund legislation due to polychlorinated biphenyl (PCB) 52 



 
 

contamination [1, 2].  NBH is a relatively large estuarine site (about 40 km long and 73 km2 area, 53 

Fig. 1) contaminated in the 1940s–1970s with discharges of PCBs, mainly Aroclors 1242 and 54 

1016 with small quantities of Aroclor 1254 [1, 2]. PCB concentrations in NBH sediment have 55 

been reported as high as 100,000 μg g-1 [1]. Elevated concentrations of PCBs have also been 56 

reported in biota from adjoining Buzzards Bay, declining with distance from NBH [3–7].  For 57 

example, samples of the non-migratory fish, Fundulus heteroclitus, collected in 1996 along a 58 

transect from the inner harbor (Superfund site) to nearby Buzzards Bay ranged from about 300 to 59 

3 μg g-1 [53]. Furthermore biota and environmental residues of PCBs in NBH and Buzzards Bay 60 

have unusually high proportions of less chlorinated homologs (di-, tri- and tetra-CBs) compared 61 

to those in most other areas [2, 5–8], reflecting the predominance of Aroclors 1242 and 1016 in 62 

the NBH discharges and thus providing a signature of NBH contamination. 63 

 64 

Common terns (CTs) Sterna hirundo and roseate terns (RTs) Sterna dougallii are small (110–65 

140 g) piscivorous seabirds that breed at three sites in Buzzards Bay, within feeding range [9, 10] 66 

and at increasing distances from NBH: Ram Island (RI; 9 km), Bird Island (BI; 15 km) and 67 

Penikese Island (PI; 17 km) (Fig. 1).  Terns of both species feed throughout the Bay, including 68 

areas adjacent to NBH, although their feeding ecologies differ: the CT feeds mainly inshore on 69 

small fish and crustaceans, whereas the RT feeds mainly in deeper water (up to 10 m) on small 70 

fish [9, 10].  Both species feed relatively infrequently within the highly contaminated area of 71 

NBH [11, 12].  However like other Buzzards Bay biota, they may be exposed to PCBs through 72 

biotic and abiotic media that have been transported out of NBH into the Bay.   73 

 74 



 
 

Concern about effects of PCBs from NBH on terns arose because numbers of both species at BI 75 

and RI declined markedly from the 1950s to 1970s [13; see Supplemental Information, this 76 

study] and the deaths of at least seven CTs were attributed to PCB poisoning in 1970–1973 and 77 

1989 [6; I. Nisbet, unpubl. data]. Observations that male embryos of CTs were feminized [5], 78 

and the sex-ratio of RTs was found to be skewed with an excess of females [14] raised concerns 79 

that NBH pollutants might be acting as endocrine disruptors on Buzzards Bay terns.  However, 80 

feminization of male embryos may reflect a stage in normal development [3], and investigations 81 

of endocrine-disrupting effects of PCBs in CTs were inconclusive [3, 5, 14, 15].   82 

 83 

CT eggs have been widely used in environmental monitoring [4, 10, 16] and environmental 84 

toxicology [3, 17–20], and have been found to be contaminated with PCBs at many locations in 85 

North America and Europe. In some studies, developmental toxicity observed in CTs and 86 

Forster’s terns Sterna forsteri has been ascribed to the highly toxic effects of dioxin-like PCB 87 

congeners (DLCs), i.e., those whose effects are mediated at least in part by the aryl hydrocarbon 88 

receptor (AHR) [21–27].   89 

 90 

In this study, we use PCB contamination in Buzzards Bay CT eggs to infer population risk based 91 

on the measured sensitivity of CTs to DLCs. Furthermore, building on the recently demonstrated 92 

predictive relationship between AHR genotype and avian species differences in sensitivity to 93 

DLCs [36; 45], we leverage information on CTs to assess PCB risks to RTs (whose sensitivity to 94 

DLCs is not known currently) by comparing genetic sequence information at the AHR locus 95 

between tern species. This information is critically important for the RT, federally listed as an 96 



 
 

endangered species, since about 40% of the North American population nests in Buzzards Bay, 97 

mainly at BI and RI [9]. 98 

 99 

In addition to site-specific contamination by PCBs, concerns have also been raised about effects 100 

on terns of the global contaminant, DDT (1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane).  101 

Residues of the DDT metabolite, ppDDE (1,1-bis-(p-chlorophenyl)-2,2-dichloroethene, referred 102 

to hereafter as DDE), are ubiquitous as a result of widespread use, and were elevated in CT eggs 103 

from Buzzards Bay in the 1970s [4; this study].  In addition, a recent study suggests (somewhat 104 

unexpectedly) that NBH may continue to act as a local source [8]. Therefore to address co-105 

occurring contaminants of suspected importance (e.g., [54]), we included egg DDE 106 

concentrations and potential effects in our consideration of contaminant risks to Buzzards Bay 107 

tern populations. 108 

 109 

Here, we provide a longitudinal study of PCBs and DDE in egg samples from CTs and RTs in 110 

Buzzards Bay breeding colonies from the 1970s to 2000s. We used recently collected and 111 

archived tern eggs to delineate temporal and spatial gradients in PCB congener patterns and 112 

compared them with NBH sediment cores. We used published literature to estimate the toxicity 113 

of DDE to avian species.  We also used published values for the toxicity of DLCs to CT 114 

embryos, but because avian sensitivity to DLCs is known to vary widely [45; 46] we produced 115 

novel genetic and biochemical data on tern AHRs to estimate the relative sensitivity of RT and 116 

CT to DLCs.  Together, this information was used to assess historical and contemporary effects 117 

of PCBs and DDE on two tern species whose breeding colonies may have been influenced by 118 

NBH estuarine Superfund site contamination.  For contaminants for which there are empirical 119 



 
 

toxicity data or for which the genetic basis for toxicity is known, the approaches used here 120 

provide a model for species extrapolation, which is essential for predicting effects on untested or 121 

untestable species. In this case by combining genetic information with monitoring data for 122 

chemical contamination, we were able to infer the historical and contemporary roles that a 123 

Superfund site may have played in the major population decline of an endangered species.   124 

 125 

Experimental details 126 

Sample description:  Between 1994 and 2005, eggs of CTs and/or RTs were collected at RI and 127 

BI (there were insufficient sample numbers to include PI in this analysis) breeding sites in 128 

Buzzards Bay (Fig. 1). Under the collection permit terms only eggs that were deserted or were 129 

incubated to term and failed to hatch were collected.  Eggs were measured, weighed, and the 130 

contents were frozen in chemically-cleaned jars and held at −20 C until contaminant analysis in 131 

2007.  In addition, archived material from eggs collected in 1972 [4] was obtained from the 132 

Canadian Wildlife Service specimen bank, Ottawa, Canada 133 

(http://www.ec.gc.ca/scitech/default.asp?lang=En&n=0B9A6436-1#nwrc), representing 134 

subsamples of 5 freshly-laid eggs and 7 eggs sampled after incubation and hatching in the lab.  135 

Egg contents and chick carcasses were homogenized and processed as described earlier [4].  In 136 

total, 100 single-egg samples (43 CT, 57 RT) and 19 pools of 8–10 eggs (10 CT, 9 RT) were 137 

obtained (Table S1).   138 

 139 

Chemical analysis: Frozen tern egg contents and archived extracts were analyzed to determine 140 

selected chemical contaminant (analyte) concentrations. Specifically, samples were analyzed 141 

using methods previously described [8], with slight modification to the analytical procedure as 142 

http://www.ec.gc.ca/scitech/default.asp?lang=En&n=0B9A6436-1#nwrc


 
 

described more fully in SI, at the US Environmental Protection Agency, Office of Research and 143 

Development, Atlantic Ecology Division, Narragansett, RI.  The 18 PCB congeners measured 144 

are those used by the National Oceanic and Atmospheric Administration National Status and 145 

Trends Program [28].  These congeners are IUPAC numbers 8, 18, 28/31, 44, 52, 66/95, 101, 146 

105/132, 118, 128, 138, 153, 170, 180, 187, 195, 206 and 209, where PCBs 028/031, 066/095 147 

and 105/132, which could not be distinguished in the analytical procedure, are referred to here as 148 

PCBs 028, 066 and 105.  The sum of the 18 congeners in each sample is reported as Total PCBs.  149 

Concentrations of two non-ortho-substituted DLCs (IUPAC numbers 077 and 126) were 150 

measured in 26 samples, representing both species, both sites and all years.  For the analysis of 151 

these DLCs, the extract was fractionated by carbon/silica column chromatography using methods 152 

in [29].  Concentrations of DDE in all samples were measured using methods described 153 

previously [8].  Representative chromatograms used for total PCBs and DDE quantification are 154 

provided in SI (Fig. S1). 155 

 156 

For comparison to tern eggs, data on PCB congeners in two sediment cores from NBH are 157 

presented here for the first time (Table S2), and used to infer temporal profiles for NBH 158 

sediment. These two sediment cores were sampled and dated as previously described [30], and 159 

analyzed for PCBs using the same methods, facilities and analyst (SJ) as used for tern eggs here. 160 

Analytes were calculated in units of dry weight (dw), but are reported in units of adjusted wet 161 

weight (aww) as described in SI for comparison with other environmental data and with data on 162 

embryotoxicity of PCB congeners [17, 23, 27]. 163 

 164 



 
 

Statistics:  Statistical analyses were conducted on analyte concentrations as dw, and analyzed 165 

using SAS version 9.2 [31] or STATISTICA version 6.0 [32].  Prior to statistical analyses, 166 

values below the MDL were assigned a value of ½MDL, and concentration data were log-167 

transformed to equalize variance.   168 

 169 

Data were analyzed for significant differences among species, years and locations.  General 170 

Linear Models (GLMs) were used to detect differences between species and sites and to assess 171 

temporal trends, fitting data to the relationship Ln[C(t)] = k0 + k1t + k2t2 + k3*species + k4*site, 172 

where C(t) is the concentration at time t (years, where 1994 = 0), species is a binary variable for 173 

species difference (CT=1, RT=0), and site is a binary variable for site difference (RI=1, BI=0). 174 

The above equation is algebraically equivalent to C(t) = C(0)*exp(k1t + k2t2 + k3*species + 175 

k4*site), where C(0)=exp(k0). Results from these models are presented based on this form, such 176 

that group differences are presented as multiplicative factors and temporal trends as rate 177 

constants (k1 and k2).  The above model was fit using both the individual egg and 19 pooled 178 

samples.  Because the pooled samples are composites of multiple eggs (and are therefore 179 

analogous to an arithmetic mean across eggs), these samples would be expected to exhibit less 180 

variability than individual egg samples. Therefore to meet the regression assumption of constant 181 

variability across samples, the regression models were weighted based on the number of eggs per 182 

pool (with a weight of one for the individual egg samples). Models also were fitted for sediment 183 

data, based on the model Ln[C(t)]=k0+k1t [algebraically equivalent to C(t) = C(0)*exp(k1t)]; 184 

because of the limited number of years with sediment data, a second order k2 term could not be 185 

fitted.  186 

 187 



 
 

Relative proportions of PCB congeners among total PCBs were calculated for each of the 100 188 

single-egg samples, which were classified into 6 groups by species and by decade of collection 189 

(1970s, 1990s, 2000s). Proportional values were arcsine square root transformed to equalize 190 

variance prior to statistical analysis. Differences in congener patterns among sample groupings 191 

by species and period were detected using the PRIMER-E function Principal Components 192 

Analysis (PCA) [33, 34].   193 

 194 

Molecular and biochemical characterization of the aryl hydrocarbon receptor (AHR): RNA was 195 

isolated from livers of two RTs that were found injured and euthanized.  Roseate tern AHR 196 

cDNA sequences were determined by reverse-transcription-PCR and rapid amplification of 197 

cDNA ends (RACE), and sequencing as described earlier for CT and chicken AHRs [35, 36]. 198 

The ability of in vitro-expressed RT AHRs to bind 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 199 

was assessed as described earlier [36].  Briefly, full-length AHRs from RT, CT, and chicken 200 

were synthesized by in vitro transcription and translation and their ability to bind [3H]TCDD (2 201 

or 8 nM) was assessed using velocity sedimentation on sucrose density gradients [36]. 202 

 203 

Risk assessment for terns exposed to DLCs.  To assess potential risks to terns exposed to DLCs, 204 

we used data on the embryotoxicity of PCB126 in CTs [17], World Health Organization (WHO) 205 

avian Toxic Equivalency Factors (TEFs) and assumptions of additivity [55]. Specifically, the 206 

toxicity of PCB 077, 105 and 118 were calculated as 0.5, 0.001 and 0.00001 times, respectively, 207 

the toxicity of PCB 126.  Although more often calculated with reference to TCDD, here we 208 

calculated Toxic Equivalents relative to the measured in ovo effects on CTs of PCB126 209 

(PCB126-EQs), and also expressed these values relative to the LD50 of 104 ng/g [17]. 210 



 
 

 211 

Tern breeding pair censuses: Data on the numbers of breeding pairs and productivity of common 212 

and roseate terns at the nesting sites in Buzzards Bay, MA, were compiled from various sources 213 

as described in SI.  214 

 215 

Results and Discussion 216 

Overall temporal decline in contamination:  The temporal models were initially fit including the 217 

site binary variable; however because this term was not significant for any PCB congener or 218 

DDE, this term was removed from further analyses. Summary tern egg data for total PCBs and 219 

DDE show historically elevated levels (Table 1), but high variability among individuals (Fig. 2). 220 

Temporal models characterized changes, where average concentrations of total PCBs in all 221 

single egg samples declined by 87% between 1972 and 1996 (k1 = −0.051 y-1, p < 0.001; k2 = 222 

0.002y-2, p<0.0001, Table S3) and by 90% by 2005.  For comparison, total PCBs in sediment 223 

cores from NBH declined by about 73% from 1972 to 1996 (k = −0.055, p = 0.0185, Table S3).  224 

 225 

Concentrations of DDE in tern eggs declined in parallel with those of total PCBs (first order rate 226 

constants k1 = −0.052 and −0.051 y-1, respectively, for the period 1972–2005, both 227 

corresponding to half-lives of about 13 y; Table S3).  The second order rate constant k2 was low 228 

for DDE compared to most PCB congeners (Table S3).  229 

 230 

Total PCBs and DDE were highly correlated in the full data set for single eggs (r2
 = 0.822, P < 231 

0.0001), but this was in part because both were much higher in the 1972 samples than in 1994–232 

2005 (see above).  The correlation was not significant within the 1972 data set (r2
 = 0.069, P = 233 



 
 

0.84), but was highly significant within the 1994–2005 data set (r2
 = 0.613, P < 0.0001).  The 234 

mean ratio of total PCBs:DDE was 19.4 in 1972 and 17.9 in 1994–2005. 235 

 236 

Previously, a compilation of data from 21 studies of CTs in 12 regions of North America showed 237 

marked decreases (by ≥ 90% in most cases) in levels of total PCBs and DDE in all areas between 238 

1966 and 1998 [10].  However, the reported values were not rigorously comparable because 239 

analytical methods varied among studies and changed over time, with only limited inter-240 

calibration, and because PCBs were quantitated in almost all studies by pattern-matching to 241 

Aroclor mixtures, using several different procedures.  Our study confirms the decline in both 242 

total PCBs and DDE after 1972, and extends this finding by showing continued declines at about 243 

the same rates through 2005 (Table S3).  It also extends temporally an earlier study in Buzzards 244 

Bay [4], including here a re-analysis of the same samples from 1972.  Although we were not able 245 

to match estimates for the same individual eggs, our mean value of 20 μg g-1 total PCBs in 11 246 

samples compares to the estimate of 29 μg g-1 total PCBs in 5 samples obtained by pattern-247 

matching in 1972 ([4], compare [38]).  However, both estimates are probably incomplete, 248 

because we measured only 18 congeners, and the earlier study did not estimate some of the less 249 

chlorinated congeners that are most characteristic of PCBs from NBH.   250 

 251 

Concentrations of all individual PCB congeners except PCB209 in single and pooled tern egg 252 

samples also declined significantly during the study period, but first-order rate constants k1 253 

decreased with increasing chlorination, from −0.193 y-1 for PCB052 to −0.005 y-1 for PCB206, 254 

with the PCB206 term not significantly different from 0 at the 95% confidence level 255 

(corresponding to half-lives of 3.6 to 131 y, respectively) (Fig. 3).  First order rate constants were 256 



 
 

closely related to Kow (the partition coefficient between n-octanol and water [39, 40]) (Table S3).  257 

For the more chlorinated congeners with higher Kow (PCBs 170–206), the second order rate 258 

constants k2 were significantly positive, indicating a decelerating decline.  For the less 259 

chlorinated congeners (PCBs 008–101), the second order rate constants k2 were low or negative 260 

(Table S3).  For comparison, NBH sediment cores, in which total PCBs declined similarly to 261 

those in terns (Table S3), displayed a lower rate of decline in lower chlorinated congeners 262 

relative to tern eggs (Fig. 3). Because less chlorinated congeners have very short half-lives, egg 263 

concentrations of these congeners reflect what the maternal tern has been eating over a period of 264 

days prior to egg-laying, consistent with large variation observed among eggs (Table S1).   265 

 266 

Our study is one of many that have reported temporal declines in concentrations of PCBs and 267 

changes in congener patterns in a wide variety of environmental samples (reviews in [41, 42]).  268 

Several studies have reported that PCB congeners decline at different rates and that rates of 269 

decline are related to physical properties such as Kow [42].  PCB contamination at NBH was 270 

originally dominated by di-, tri- and tetra-chlorinated congeners [2, 8, 30; Table S2], resulting 271 

from the predominance of Aroclors 1242 and 1016 in the discharges. Our study shows that these 272 

congeners were selectively depleted as the PCBs were transferred from sediment to biota, and 273 

have been further depleted in the decades since the discharges ceased in 1972 (Fig. 3; Table S3).  274 

Consequently, the more recent samples of tern eggs show little of the distinctive NBH signature 275 

and resemble those from other areas remote from point sources, with a predominance of hexa- 276 

through octa-chlorinated congeners (Table S3).  Our study also indicates that concentrations of 277 

the more chlorinated congeners (PCBs 170–206) in the tern eggs declined very slowly; 278 

concentrations of PCB206 increased after 1996 and those of PCB209 increased at an accelerating 279 



 
 

rate throughout the study period (Fig. 3, Tables S3). The distribution of homologues in 280 

representative examples of these Aroclors, tern eggs from two periods and NBH sediment 281 

illustrates these comparisons (Fig. S2). 282 

  283 

After controlling for year of collection, concentrations of total PCBs and of individual congeners 284 

were higher in CT than in RT eggs for most congeners (with the ratio significantly higher than 1 285 

at the 95% confidence level for nine congeners and total PCBs), by factors that varied with 286 

degree of chlorination and Kow, from 4.42 for PCB052 to 0.65 for PCB008, with an overall 287 

geometric mean of 1.27 (Table S3).   Similarly, after controlling for year of collection, DDE 288 

concentrations in the period 1994–2005 were significantly higher in common terns than in 289 

roseate terns, by a factor of 1.46 in the egg samples. 290 

 291 

Differences in congener proportions of total PCBs in single eggs grouped by species and period 292 

were further explored using PCA. PC1 explained 74% of total variation and documented a strong 293 

temporal trend, with high values in the 1970s and lowest values in the 2000s (Fig. S3).  PC1 was 294 

most influenced by the relatively high proportions of lower chlorinated congeners (PCB ≤101) in 295 

the 1970s, and relatively high proportions of PCB105 and PCB138 in the 2000s (Fig. S3; Table 296 

S4).  PC2 explained 9 % of total variation and was dominated by high values of PCB101 and low 297 

values of PCB180 (Table S4).  PC2 was largely responsible for the separation of the RTs in the 298 

2000s from the 1990s (Fig. S3).  299 

 300 

Both CTs and RTs are exposed to PCBs primarily by ingestion of fish in Buzzards Bay up to 25 301 

km from NBH [11, 12].  RTs have never been recorded foraging within the most contaminated 302 



 
 

zone and CTs have rarely been so recorded [12; I. Nisbet, unpubl. data]; however, variation 303 

among eggs in contaminant concentrations could be explained partly by variation in feeding 304 

areas. In a 1971–81 study, levels of organochlorine contaminants, including PCBs and DDE, in 305 

tern eggs varied widely among sampling sites and were correlated with levels in fish from the 306 

same locations [4].  Hence most of the contaminants must have been acquired by the terns in the 307 

3–4 weeks between their return from the winter quarters and egg-laying [4, 43].  The 308 

characteristic signature of PCBs from NBH sediment, with high proportions of di- through tetra-309 

CBs, has been observed to varying degrees in fish throughout Buzzards Bay, as well as in CTs at 310 

both BI and RI [3, 5–7].  However, differences in congener patterns between NBH sediment and 311 

biota may reflect differences in rates of degradation, losses to the atmosphere, partitioning 312 

between water and bottom or suspended sediments, uptake and retention in prey organisms, 313 

retention in the terns’ tissues, and transport into the eggs.  Our finding that congener patterns 314 

changed more rapidly in the tern eggs than in the sediment core (Fig. 3) indicates that the biotic 315 

processes are important factors in congener fractionation, in addition to the physico-chemical 316 

processes affecting exposure.   317 

 318 

Dioxin-like PCBs and molecular inferences regarding their potential effects:  As for other 319 

analytes, concentrations of  PCB077, PCB126, PCB105, and calculated values of PCB126-EQs 320 

(but not PCB118, Table 2) were significantly higher in 1972 than in later years (means 91.04 vs 321 

1.95 ng g-1, respectively, for PCB126-EQs; p < 0.0001). The proportion of PCB126-EQs per 322 

total PCBs also showed a similar temporal trend (p = 0.0007), which like the trends for DLCs did 323 

not differ between species. Most of the PCB126-EQs in eggs from the 1970s were contributed by 324 

PCB077 (averaging 81%; Table 2), which remained prominent but declined in later decades 325 



 
 

(averaging 52%; Table 2). Uncertainties associated with the calculation of the toxic potency of 326 

PCBs in tern eggs are discussed in the risk assessment section. 327 

 328 

Avian species exhibit dramatic differences in sensitivity to DLCs. For example, the domestic 329 

chicken (Gallus gallus) is extremely sensitive to the effects of DLCs, whereas several other 330 

avian species, including CT, are 10- to 1,000-fold less sensitive than chickens [44, 45]. Previous 331 

studies have suggested that the amino acid sequence of the AHR1 ligand-binding domain (LBD) 332 

can be used to predict sensitivity to dioxin-like compounds [36, 44, 45]. A series of studies 333 

involving more than 85 species of birds [36, 44-46] has demonstrated that the amino acid 334 

sequence and associated biochemical properties of bird AHR1 are highly predictive of species 335 

sensitivity to DLCs, including PCBs [47].  Therefore, we inferred the sensitivity of RTs to DLCs 336 

from the genetic similarities of its AHR1 protein to that of CTs, previously demonstrated to 337 

possess a low-affinity, ’type 3‘ AHR1 [36, 45].  Full-length AHR1 cDNAs were cloned from 338 

RNA isolated from two RTs.  Three allelic sequences were identified, and have been designated 339 

AHR1*1, AHR1*2, and AHR1*3.  All of the RT AHR1 variants would be classified as type 3 340 

AHRs [45].  AHR1*1 is most similar to AHR1 from the CT, with 12 synonymous nucleotide 341 

differences and no amino acid differences (Table S5; Fig. S4).  AHR1*2 exhibited a single 342 

amino acid difference as compared to the CT AHR1 and RT AHR1*1.  AHR1*3 was the most 343 

divergent, with 6 amino acid differences as compared to AHR1*1 and 7 differences as compared 344 

to AHR1*2 (Table S5). For comparison, these closely related CT and RT AHR1 proteins exhibit 345 

68-74 amino acid differences as compared to the high-affinity, ‘type 1’ chicken AHR1 (Table 346 

S5). 347 

 348 



 
 

The ligand-binding properties of the three RT AHR1 variants were compared to those of CT 349 

(low-affinity) and chicken (high-affinity) AHR1 forms by velocity sedimentation analysis using 350 

two different concentrations of radioligand ([3H]TCDD; 2 and 8 nM).  All three RT AHR1 351 

variants were indistinguishable from the CT AHR1 in their ability to bind [3H]TCDD (Fig. 4), 352 

suggesting that all three are low-affinity forms, like the CT AHR1.  These results suggested that 353 

CTs and RTs are similar in sensitivity to DLCs, and allowed us to use the same risk assessment 354 

approach for both CT and RT.   355 

 356 

Risk assessment for terns:  PCB126-EQs in CT eggs sampled in 1972 (n=9) ranged from 0.01 to 357 

2.01 times the in ovo LD50 [17] (Table 2). Thus in comparison to in ovo testing, 56% of 1972 358 

eggs were in the lethal range (≥ 1 times LD50 ), 22% were in the range of  increased deformities 359 

and reduced hatching times (≥ 0.1 but < 1 times the  LD50), and 22% were below lowest tested 360 

(but toxic) concentration ( ≥ 0.01 but < 0.1 times the LD50) [17].  Because there was no evidence 361 

of differences between species in sensitivity to DLCs (see above), these conclusions are probably 362 

equally valid for RTs as for CTs.  Furthermore, a similar summary of the toxic impact of 363 

PCB126 EQs for the tern eggs from 1990s-2000s (n=15) indicates that 87% were below lowest 364 

tested (but toxic) concentration (> 0.01 but < 0.1 times the LD50) and 13% were < 0.01 times the 365 

LD50 [17].  Thus using WHO-derived TEQs and measured in ovo toxicity, the likelihood of toxic 366 

effects on tern eggs was high in the 1970s but much lower in the 1990s and 2000s. In fact 367 

because PCB concentrations in tern eggs declined at about 6% per year after 1972 (Fig. 2), risks 368 

to Buzzards Bay terns would have declined fairly rapidly.  369 

 370 



 
 

To assess the risks of DDE, we used published data [4, 48, 49] to estimate the LC50 for 371 

embryonic death in common terns as about 3000 ng g-1 ww.  Using this method, eight out of 11 372 

of the CTs and the single RT sampled in 1972 had DDE concentrations > 0.2 times the estimated 373 

LC50, ranging up to 0.84 times the estimated LC50 (Table 1).  In 1994–2005, none of the eggs of 374 

either species had DDE concentrations > 0.1 times the estimated LC50.  However, the estimated 375 

value of LC50 is imprecise because only one of the references cited presented a clear comparison 376 

between DDE levels in eggs that hatched and those in eggs in which embryos died, and sample 377 

sizes in that study were very small [4].   378 

 379 

Considered together, our risk assessments suggest that a majority of the CT eggs in 1972 would 380 

have contained concentrations of highly toxic PCB congeners but only a small proportion of CT 381 

eggs contained DDE within the range likely to cause hatching failures.  Based on lower 382 

exposure, RTs would have been at slightly lower risk.  However, the uncertainties associated 383 

with these estimates must also be considered.  For example, other risk assessments for 384 

contaminants such as these have clearly identified the need for species-specific data for DDE 385 

[69]. In fact, the LC50 for embryotoxicity of DDE in CTs has not been well characterized: the 386 

only study in which DDE levels were compared between eggs that failed to hatch and eggs 387 

collected at random was based on a very small sample [4].  We also identify several uncertainties 388 

associated with the estimation of PCB effects. With respect to the potential for overestimation of 389 

toxic effects, (1) our calculated TEQs are driven primarily by the WHO avian TEF [70] of 0.5 390 

for the ratio between the toxic potencies of PCB077 and PCB126.  The basis for this value was 391 

limited when it was proposed, and subsequent evidence, including part of the study on which we 392 

base our LD50 value for PCB126 in terns [17], suggests that it may have been too high; (2) the 393 



 
 

LD50 value we use for PCB126 in terns is based on a study in which PCB126 was injected into 394 

common tern eggs [17], and this may overestimate the toxicity of PCB126 and PCB077 395 

incorporated into eggs by natural routes in wild birds [17]. However, it should also be noted that 396 

we have no data on other potential DLCs such as TCDD or chlorinated dibenzofurans that may 397 

contribute to total EQs and are more toxic than most of the PCB congeners[37]. This means that 398 

population risk in this study may be underestimated. Also importantly, these risk assessments are 399 

based on acute embryotoxicity and do not consider sublethal or delayed effects resulting from 400 

early life exposure or long-term exposure to lower levels of contaminants, which also could 401 

contribute to population risks.  402 

 403 

Our data are limited to the 1970s – 2000s when egg contaminants were declining, however, it is 404 

likely that exposure of terns to DLCs and DDE, and consequent effects, would have been greater 405 

in the 1960s. For example, usage of DDT and levels of DDE in fish were much higher in the 406 

1960s [4]. Furthermore, NBH sediment PCBs peaked in the 1970s [30], and the PCBs discharged 407 

into NBH were replaced by Aroclor 1016, with much lower levels of DLCs than the Aroclor 408 

1242, which was used until 1971−72 [1].  Thus, based on egg contaminants, Buzzards Bay tern 409 

populations would be predicted to decline between 1950s and 1970s, followed by increases into 410 

the 1990s and 2000s. In fact, numbers of both RTs and CTs nesting at BI and RI declined rapidly 411 

between the 1950s and 1972 [13; Table S6], but have increased during the period of this study 412 

[9, 10, 50, Table S6].  While several factors including contaminant exposures [4, 10, this study] 413 

have been proposed as contributing to these changes [9, 10, 51], temporal patterns of tern egg 414 

PCB and DDE concentrations are consistent with their potential effects on Buzzards Bay tern 415 



 
 

populations (Fig. S5; Table S6).  Specific to this study, declining concentrations of egg 416 

contaminants after the 1970s are concurrent with increasing tern populations (Fig. S6). 417 

   418 

Other piscivorous birds that breed in Buzzards Bay or visit the bay in winter, including 419 

mergansers (Mergus spp.), loons (Gavia spp.), cormorants (Phalacrocorax spp.) and gulls 420 

(Laridae) may also have experienced impacts of high exposures to PCBs associated with the 421 

NBH Superfund site. Molecular genetic studies of the AHR suggest that many of these species 422 

would be similar to CTs and RTs in their relative insensitivity to DLCs, i.e., ‘type 3’ species; 423 

however, species in higher sensitivity categories could be affected by exposures up to 100 times 424 

lower than those affecting terns [45].  The approach employed here—combining analytical and 425 

molecular genetic data to perform inferential risk assessment—will have greater applicability as 426 

(1) the mechanistic basis for toxicant effects is expanded beyond the currently limited number of 427 

chemical classes, (2) functional genetic variation is extrapolated beyond a few species for which 428 

genomic information is available [52], and species ecology is further exploited to infer species 429 

vulnerabilities, even when specific chemical monitoring data of tissue concentrations are 430 

unavailable. 431 

 432 
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Table 1:  Concentrations of Total PCBs and DDE, ng g-1 adjusted wet weight (aww), in eggs of 619 

common (CT) and roseate (RT) terns collected from Ram Island and Bird Island in Buzzards 620 

Bay, MA, USA.  All entries are in the form (geometric mean, gmn) arithmetic mean (mn) ± SD. 621 

     Total PCBs  DDE 

Species 
Sample 
Type n Year   (gmn) mn sd   (gmn) mn sd 

CT Egg 11 1972  (14853) 20286 11343  (766) 890 594 
CT Pool 4 1995  (1867) 2077 1204  (113) 115 22 
CT Pool 3 1996  (1691) 1776 687  (125) 133 49 
CT Egg 8 1998  (1484) 1567 533  (132) 139 43 
CT Pool 2 1998  (1515) 1525 240  (134) 135 15 
CT Egg 8 1999  (2295) 2501 1146  (115) 120 37 
CT Pool 1 1999   1646    110  
CT Egg 16 2005  (1293) 1456 764  (91) 99 41 

 
RT Egg 1 1972   8246    597  
RT Egg 8 1994  (1506) 1700 997  (82) 89 37 
RT Pool 1 1994   1152    90  
RT Egg 16 1996  (1370) 1592 964  (69) 78 38 
RT Pool 3 1998  (1494) 1497 107  (102) 107 37 
RT Egg 16 1999  (1286) 1395 562  (68) 73 27 
RT Pool 3 1999  (1671) 1695 340  (79) 80 14 
RT Egg 16 2005  (948) 985 278  (40) 45 21 
RT Pool 2 2005   (1215) 1217 102   (73) 75 14 

 622 

  623 



 
 

Table 2: Concentrations of Total PCBs and PCB congeners with dioxin-like activity in selected samples 624 

as adjusted wet weight (AWW), and calculated values of Toxicity Equivalencies of PCB126 (PCB 126 625 

EQs) as described in Methods per references [55] and [17].  626 

  627 
   AWW, ng g-1 

Year Decade Species 
PCBs, 
Total 

PCB77 
as 

PCB 
126 
EQ 

PCB105 
as PCB 
126 EQ  

PCB118 
as PCB 
126 EQ  

Summed 
PCB126 

EQs  

PCB126 
LD50 
EQs) 

100*(PCB126 
EQs/Total 

PCBs) 

1972 1970 CT 28815 133.50 0.59 0.12 158.21 1.52 0.55 
1972 1970 CT 28744 68.50 0.47 0.10 89.17 0.86 0.31 
1972 1970 CT 25837 100.00 0.39 0.09 121.48 1.17 0.47 
1972 1970 CT 20560 93.00 0.39 0.08 120.77 1.16 0.59 
1972 1970 CT 20002 23.80 0.25 0.06 28.74 0.28 0.14 
1972 1970 CT 16515 139.50 0.40 0.09 159.09 1.53 0.96 
1972 1970 CT 11991 169.00 0.54 0.11 208.94 2.01 1.74 
1972 1970 CT 2628 0.27 0.02 0.01 1.32 0.01 0.05 
1972 1970 CT 1553 4.15 0.02 0.01 5.43 0.05 0.35 
1972 1970 RT 8246 6.55 0.14 0.03 17.22 0.17 0.21 
1994 1990 RT 1152 0.37 0.05 0.02 1.03 0.01 0.09 
1995 1990 CT 3852 3.99 0.16 0.06 6.56 0.06 0.17 
1995 1990 CT 1698 0.31 0.06 0.03 1.02 0.01 0.06 
1996 1990 CT 2534 0.80 0.12 0.05 2.00 0.02 0.08 
1996 1990 CT 1600 0.39 0.06 0.03 0.98 0.01 0.06 
1998 1990 CT 1694 0.67 0.06 0.03 1.75 0.02 0.10 
1998 1990 RT 1614 0.73 0.06 0.03 1.84 0.02 0.11 
1998 1990 RT 1403 0.14 0.05 0.02 0.71 0.01 0.05 
1999 1990 CT 1646 0.74 0.04 0.02 1.65 0.02 0.10 
1999 1990 RT 2030 0.24 0.07 0.03 1.15 0.01 0.06 
1999 1990 RT 1705 0.52 0.06 0.03 2.10 0.02 0.12 
2005 2000 CT 3112 2.88 0.12 0.06 5.17 0.05 0.17 
2005 2000 CT 2434 0.77 0.07 0.03 2.07 0.02 0.08 
2005 2000 RT 1289 0.40 0.04 0.02 1.38 0.01 0.11 
2005 2000 RT 1145 0.44 0.03 0.02 1.25 0.01 0.11 

  628 



 
 

 629 

Figure 1.  Map of Buzzards Bay, Massachusetts, USA, showing the location of the PCB-630 

contaminated site at New Bedford Harbor (NBH), and the breeding sites for common terns 631 

(Sterna hirundo) and roseate terns (S. dougallii) where eggs were collected for this study.   632 
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 634 

Figure 2.  Concentrations (ng g-1 adjusted weight wet, aww) of Total PCBs in individual and 635 

pooled samples of common (CT) and roseate (RT) tern eggs collected in Buzzards Bay, MA, 636 

USA.   637 
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 641 

Figure 3.  Rate constants for temporal changes of PCB congeners in 2 New Bedford Harbor 642 

(NBH) sediment cores and Buzzards Bay tern eggs (Tables S2, S3) related to n-octanol-water 643 

partition coefficients (Log10 Kow) [40, 41]. 644 
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 646 

Figure 4.  [3H]TCDD binding by in vitro expressed AHRs from chicken, common tern, and 647 

roseate tern.  (A) In vitro transcription and translation of AHRs. AHRs were expressed in the 648 

presence of [35S]methionine.  (B, C) AHRs were incubated overnight at 4°C with [3H]TCDD (B, 649 

2 nM; C, 8 nM final concentration) and then analyzed by velocity sedimentation. Binding is 650 

measured in disintegrations per minute (dpm), where binding of [3H]TCDD to unprogrammed 651 

lysate (UPL, i.e., without AHR) measures nonspecific binding, and specific binding = total 652 

binding (radioligand binding to AHR) - nonspecific binding (radioligand binding to UPL). 653 


