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CO2 and fire influence tropical 
ecosystem stability in response to 
climate change
Timothy M. Shanahan1, Konrad A. Hughen2, Nicholas P. McKay3, Jonathan T. Overpeck4, 
Christopher A. Scholz5, William D. Gosling6,7, Charlotte S. Miller7,8, John A. Peck8,9, 
John W. King9,10 & Clifford W. Heil9,10

Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the 
distributions of tropical woodlands and savannas, but our understanding of these processes is limited 
by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated 
record of vegetation, climate and fire from West Africa to examine the role of these interactions on 
tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread 
expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing 
these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which 
transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the 
balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by 
promoting woody plant growth, despite increased aridity. Our results indicate that the interactions 
between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these 
systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and 
grassland dominated states in the future.

Savanna-forest complexes occupy nearly 20% of the Earth’s land surface1, are responsible for 30% of the Earth’s 
terrestrial primary production and play an important role in global carbon budgets2. Anthropogenic climate 
change is anticipated to have a significant influence on the ecology and distribution of tropical ecosystems, 
though the magnitude, rate and direction of these changes are uncertain3. These uncertainties reflect the compet-
ing influences of moisture availability, CO2 and fire on tropical vegetation4–6. For example, although the dominant 
factor controlling the potential amount of woody cover in savanna ecosystems is precipitation, actual woody 
cover is controlled by landscape disturbance, much of which is attributable to fire7,8. The establishment of woody 
plants in fire-prone tropical grasslands depends on both the frequency of fires and growth rates by affecting 
whether plants can achieve sufficient stem diameters and heights to survive subsequent fires9,10. In ecosystems 
with frequent fires or slow growth rates, woody plants may be unable to escape this “fire trap” despite increases in 
moisture availability. Changes in CO2 may alter these relationships by changing the carbon available for woody 
plant growth9,10, and increased CO2 has been shown to increase growth rates, leading to increased survivability 
in the presence of fire9,11,12.

To better understand the stability of tropical forest-savanna systems, we use the sediment record from Lake 
Bosumtwi, Ghana, which is located in the lowland tropical forest, several hundred kilometers south of the 
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modern-day savanna-forest boundary (Fig. 1). We reconstruct changes in vegetation and hydrology using the 
carbon and hydrogen isotope composition of sedimentary leaf wax n-alkanes (δ 13Cwax, δ Dwax). Changes in δ 13C 
are interpreted as reflecting changes in the relative proportions of plants using the C3 and C4 photosynthetic 
pathways13. C3 vegetation includes most woody plants and winter season grasses with average δ 13C values that 
are as low as − 36‰, whereas most summer or dry season C4 grasses have δ 13C values of around − 20‰14. We 
simultaneously reconstruct changes in precipitation using hydrogen isotope analysis of the same compounds  
(δ Dwax)15, which allows us to assess the relative phasing of vegetation and precipitation changes independent of 
any potential complications associated with organic matter transport pathways or residence time.

Changes in fire frequency are estimated from layer counts of distinct charcoal laminae within the annual sed-
iment laminations (Fig. 2). Because the charcoal occurs as layers and is composed mostly of relatively intact frag-
ments, we interpret the charcoal layers as reflecting the seasonal transport of charcoal to the lake from dry season 
fires with little or no time lag. We then use the frequency of charcoal layers as a proxy for annual fire frequency. 
Reconstructions of fire frequency are supported by fire reconstructions from concentrations of levoglucosan, a 
byproduct of cellulose combustion, and sediment particulate charcoal counts in pollen slides. Previous studies 
have shown that particulate charcoal16 and levoglucosan17 can provide reliable indicators of paleofire in some 
sedimentary archives and Lake Bosumtwi is an ideal location for preservation of the fire marker levoglucosan 
because of its permanent bottom water anoxia and well-preserved organic matter18. While all three approaches 
provide proxies of changes in fire regime, processes such as transport and deposition, fire intensity/temperature 
and fuel source will affect them differently, leading to differences in fire reconstructions19–23 (Fig. 3). However, 
the most significant changes are consistent between the fire proxy indicators, indicating that they do preserve 
consistent large scale variations in the fire regime (SOM).

Results
Evidence for a nonlinear tropical vegetation response to changes in hydroclimate. The Lake 
Bosumtwi record shows that the climate, fire and ecological regimes of tropical West Africa changed signifi-
cantly over the past 28,000 years. During the early part of the record (Fig. 3A; 15,000–28,000 yr BP), δ Dwax values 
were positive, indicating more arid conditions, fire was more frequent and δ 13Cwax values were higher (− 17.3 
to − 20.6‰) indicating that the landscape was dominated by drought-tolerant C4 summer grasses with only 
minor contributions from C3 woody plants that burned almost annually. In comparison with the rest of the 
record, δ 13Cwax values show little variability, despite significant variations in δ Dwax and fire at this time. After ca. 
15,100 yr BP (Fig. 3B, blue dashed line), more depleted δ Dwax values indicate a gradual return to more humid con-
ditions. These are accompanied by a decline in the frequency of fires, which disappear almost entirely for much of 
the most humid portion of the Holocene (i.e., 10,000–3,200 yr BP). However, in contrast to the gradual nature of 

Figure 1. Present-day distribution of vegetation across Africa. Modeled variations in vegetation cover 
computed as proportions of C3 and C4 plants replotted from41. White areas indicate deserts. Circle indicates the 
location of Lake Bosumtwi, Ghana (6°30′ N, 1°25′ W). Map produced using ESRI ArcGIS software [v.10.3.1], 
(http://www.esri.com/software/arcgis).

http://www.esri.com/software/arcgis
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these changes in precipitation and fire, the δ 13Cwax record suggests that the vegetation response was abrupt, with 
a ~25% change in the proportion of C3 woody plants in < 150 years. The rapid expansion of woody plants also 
occurs ca. 300 years after the onset of wetter conditions (at 14,800 yr BP), at the time when fire frequency had 
declined from nearly annual to one fire every five years (Fig. 3B, green dashed line). Over much of the remainder 
of the record, the landscape around Lake Bosumtwi was dominated by a variable mix of C3 and C4 plants sugges-
tive of an open woodland or forest environment similar to today, though the data also suggest a trend towards an 
increasing proportion of C3 plants over the past 14,500 years. Coherent variations in δ 13Cwax and δ Dwax, during 
this period indicate that the dominant control over changes in the relative proportions of C3/C4 plants was pre-
cipitation, as expected in the absence of fire disturbance. After ca. 3200 yr BP, δ Dwax values suggest that conditions 
became significantly more arid, and were accompanied by an increase in fire. Nevertheless, fire frequency during 
the late Holocene was much lower than during the late Pleistocene (27 to 15 ka), and the magnitude of the fire 
response recorded in the levoglucosan and particulate charcoal records differ, suggesting a distinctly different fire 
regime. Unlike the earlier part of the record, severe late Holocene aridity (∆ δ Dwax =  ~17‰) was associated with 
only minor changes in δ 13Cwax, (∆ δ 13Cwax =  ~2–3‰) indicating that woody plant-dominated ecosystems persisted 
despite these environmental changes.

The changing relationships between δ 13Cwax and δ Dwax suggest that reconstructed vegetation changes over 
the past 28,000 years cannot be explained solely by precipitation but instead reflect the competing influences of 
climate, fire and atmospheric CO2, as suggested by modeling and modern ecosystem studies24,25. The invariant 
nature of the early portion of the δ 13Cwax record, when compared with changes in δ Dwax, shows that these grass-
lands were insensitive to temporarily increased precipitation. The fire proxies also show that at this time, signif-
icant landscape-scale fires occurred at annual to interannual timescales. Our evidence for extensive grasslands 
across tropical Africa at this time with a high frequency of burning is supported by both vegetation synthesis and 
modeling studies26,27 and lower resolution fire reconstructions from marine sediment cores, which indicate that 

Figure 2. Evidence for changes in fire frequency. Photomicrographs showing changes in the frequency of 
charcoal laminations in transmitted light sediment thin section from (A) the late Holocene (~1500 yr BP) when 
discrete bands of charcoal are absent, (B) the deglacial transition (~14,600 yr BP) when charcoal frequency 
has started to decline, (C) the glacial (~18,200 yr BP) when charcoal bands occur almost annually. Varves are 
evident in the millimeter to sub-millimeter scale couplets of light and dark laminae. The charcoal appears as 
distinct black layers in the boundaries of some of the annual laminae.
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glacial conditions were accompanied by substantial export of fire-derived elemental carbon28. We hypothesize 
that these fires were sufficiently frequent and widespread to prevent woody plants from becoming established, as 
can occur in modern savannah ecosystems7,8. Prior to ~15,000 yr BP, this effect would have been exacerbated by 
low CO2 levels, which would have slowed the rate of woody plant germination, growth and recovery, making it 
difficult for C3 plants to recover from fire disturbance even as humidity increased4.

Figure 3. (A) Temporal variations in the climate-fire-CO2-vegetation system of tropical West Africa over the 
last 28,000 years BP reconstructed from Lake Bosumtwi. Atmospheric CO2 from the EPICA (triangles)42 and 
Taylor Dome ice cores43 (squares). Computed changes in Northern Hemisphere summer (JJA) insolation at 
6.5°N44 (grey line). Reconstructed precipitation changes from the δ D values of C31 n-alkanes (blue circles) from 
Lake Bosumtwi15. Reconstructed changes in fire from a 20-year moving average of the frequency of charcoal 
layers in thin sections (brown), concentrations of the cellulose combustion byproduct levoglucosan (ng/cm2/
yr) orange circles) and particulate charcoal influx (particles/cm2/yr; pink diamonds). Relative proportion of C3 
and C4 plants from the δ 13C values of C31 n-alkanes. (B) Expanded view of the transition from dry, frequently 
burned, grassland dominated ecosystems to more humid, low fire and CO2 dominated forested ecosystems 
during the last deglaciation. The blue dashed line indicates the onset of humid conditions, the green dashed line 
indicates the midpoint of the abrupt deglacial vegetation shift.
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A critical role for fire and CO2 in controlling tropical vegetation stability. We propose that the high 
fire frequency early in the record is also the proximate cause of the abrupt and delayed expansion of C3 plants at 
14,800 yr BP (Fig. 4). The rapid shift in vegetation occurred when precipitation was similar to earlier (> 18,000 yr 
BP) and later (< 3000 yr BP) periods when no systematic vegetation change happened, demonstrating that vegeta-
tion was not responding to changes in precipitation alone (Fig. 3). Instead, the abrupt vegetation change reflects a 
threshold response to the interactions between gradually declining fire frequency, increasing CO2 and increasing 
precipitation. The abruptness of this transition likely reflects a combination of the equilibration of C3 plant com-
position with available moisture and a feedback between woody plant expansion and a further reduction in the 
spread of subsequent grassland fires. Support for a threshold mechanism in controlling the vegetation response is 
also consistent with the ~300 year lag between the initial changes in δ Dwax and δ 13Cwax, and the transition from a 
system where vegetation is unresponsive to changes in precipitation (> 14,800 yr BP) to one where the dominant 
control on vegetation is precipitation (14,800–3,000 yr BP) (Fig. 3). Although other abrupt changes in vegetation 
occur in the record at ca. 11,500 yr BP and 5700 yr BP, these lack the characteristics indicative of a threshold 
vegetation response (Supplementary Information Fig. S4). For example, neither show clear evidence for a lag in 
the timing of the vegetation response to climate, nor is there evidence of changing sensitivity of the vegetation to 
environmental conditions. Both of these are evident in the shift at 14,800 yr BP.

Following the initial expansion of C3 plants and for much of the remaining record, the frequency and inten-
sity of fire remained low, CO2 was high and increasing, and vegetation responded on centennial to millennial 
timescales to changes in precipitation, with greater proportions of C3 plants accompanying wetter conditions 
(Fig. 3). However, this interval is also characterized by an overall trend towards greater C3 plant abundance and a 
decrease in the sensitivity of vegetation to changes in precipitation. We hypothesize that this reflects the influence 
of increasing CO2, which favors the growth of C3 plants relative to C4 grasses29. These effects would also have been 
enhanced by biogeophysical feedbacks; well-developed forests can act to suppress the growth and colonization of 
grasses by reducing ground light availability, maintaining higher sub-canopy humidity and keeping temperatures 
lower, all of which promote the growth of C3 plants and are capable of maintaining forest stability30, even as envi-
ronmental conditions change.

Discussion
The Lake Bosumtwi record highlights the competing roles of climate, fire and CO2 on the long-term stability 
and evolution of grasslands and forests of tropical West Africa. In agreement with many studies of modern trop-
ical grassland ecosystems, frequent fires played a crucial role in excluding woody plants during glacial to late 
glacial times, even as precipitation and CO2 increased4–6,9,10,31 (Fig. 4). However, this also resulted in a state of 
disequilibrium between climate and vegetation, leading to an abrupt vegetation response to changes in climate. 
In contrast, dramatically increased aridity and fire in the late Holocene did not cause a substantial increase in 
drought-tolerant C4 grasses, suggesting that tropical forests became more resilient to changes in climate and 
disturbance. We propose that this is a consequence of high CO2 and biogeophysical feedbacks, which resulted in 
conditions more favorable for C3 plant growth and recovery, stabilizing existing forest cover despite the increased 
aridity (Fig. 4). We hypothesize that, as with the late glacial grasslands, this has resulted in a dynamically unstable 
climate-vegetation state that is susceptible to rapid transitions between C3 and C4 plant-dominated landscapes32. 
Although elevated CO2 should continue to act as a stabilizing element, at higher CO2 the advantages for C3 plants 
decrease33, limiting its ability to stabilize these systems and increasing the potential for an abrupt collapse of trop-
ical forest ecosystems in response to increased aridity. The sensitivity of these ecosystems to slight perturbations 
in climate today is evident in the Dahomey Gap, just to the east of Lake Bosumtwi, where precipitation is only 
200–400 mm yr−1 lower than Bosumtwi but the natural landscape is dominated by grasslands with only isolated 
patches of forest34. Here, vegetation records indicate that small increases in rainfall resulted in wholesale return of 
forest cover briefly in the late Holocene35. In the future, much of West Africa could become more arid, provided 
that projected increases in precipitation are insufficient to overcome a net drying of soils driven by increased 
temperature36. Such gradual changes in hydroclimate and fire could potentially overwhelm the natural buffering 
capacity of high CO2 and allow current climate-vegetation stability to give way to rapid forest-savanna transfor-
mation in a region that is already a mosaic of these two land-cover types.

Methods
Study site. Past variations in the climate, vegetation and fire history of West Africa were reconstructed using 
the sediment geochemical record from Lake Bosumtwi, Ghana. Lake Bosumtwi is a small (~8 km diameter), 
internally draining lake occupying a meteorite impact crater in southern Ghana (Supplementary Fig. S1). The 
lake is deep (~75 m depth asl) and sheltering by the crater walls inhibit mixing, leading to stratification and per-
manently anoxic bottom waters. This limits bioturbation and allows for the preservation of mm-scale laminations 
that have been demonstrated to be annual18. The majority of the catchment is forested except for the flat lying 
terraces and drainages, which have been converted to agriculture37. The regional climate is controlled primarily by 
the West African monsoon, which brings moisture to southern Ghana in May-September when the Intertropical 
Convergence Zone (ITCZ) migrates to the north (Supplementary Fig. S1). In winter, as the ITCZ shifts south-
ward, the climate of the region is dominated by dry northwesterly winds, which inhibit rainfall.

Age model development. A detailed description of the age model used in this study is published else-
where38. It is based on a combination of radiocarbon dating, Bayesian age depth modeling and varve counting. 
The chronology consists of 107 radiocarbon dates on bulk organic matter and macrofossils covering the upper 
21.4 meters of sediment. Dates from different cores were correlated using marker laminae matches and Bayesian 
age depth modeling was performed using the R software package BACON39 and using the IntCal09 radiocar-
bon calibration curve40. Over the deglacial section of the core, we revised the age model by wiggle matching 
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the uncalibrated radiocarbon ages to the IntCal09 calibration curve using the varves as a constraint on the time 
elapsed between radiocarbon age. An optimal fit was determined using Χ 2 minimization38.

Figure 4. Model of the impacts of climate, fire and atmospheric CO2 on the vegetation of tropical 
Africa. Left: cartoon of changes in the climate-ecosystem balance as a function of time. Right: schematic of 
changes in each parameter indicating the size and direction of change between timesteps (arrows) and the 
relationships between the parameters (red: negative feedback, blue: positive feedback, circle: hypothesized 
driver of the relationship, dashed: the relationship between these two parameters is weakened by other feedback 
relationships.
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Lipid and compound-specific stable isotope analysis of n-alkanes. Sediment samples (1–5 g) were 
freeze dried, homogenized and solvent-extracted by either accelerated solvent extraction (Dionex ASE 200) or 
a microwave extraction (MARS) using dichloromethane:methanol (9:1; v/v). n-alkanes and levoglucosan were 
isolated from the total lipid extract by silica gel column chromatography. n-alkanes were additionally isolated 
by silver nitrate silica gel chromatography and molecular sieve or urea adduction. Stable carbon and hydrogen 
isotope analysis of the long chain n-alkanes was performed by gas chromatography isotope ratio mass spectrom-
etry (GC-IR-MS). Description of the methods for δ Dwax analysis and corrections for changes in vegetation and 
ice volume are described in the online Supplementary Materials. δ 13Cwax values were measured against internal 
calibrated propane reference gas standards and are reported in % VPDB (Vienna Pee Dee Belemnite). The pre-
cision of the analysis, based on repeated analysis of the standard mix was better than 0.3%. Each sample was 
measured in triplicate and the mean precision for the long chain n-alkanes (C27, C29, C31, C33) based on this 
replicate analysis was better than 0.4%. Levoglucosan analysis was performed by gas chromatography mass spec-
trometry. Identification of the trimethylsilyl ether derivative of levoglucosan was identified in the mass scan by its 
characteristic fragments (m/z 363, 333, 217, 204) and its retention time determined with an authentic standard. 
Quantification was performed using an internal standard (androstanol). Levoglucosan concentrations (ppm) 
were normalized to time (ppm/yr) using varve counts over the laminated intervals of the core and using the 
Bacon age-depth model over the unlaminated sections.

Reconstruction of fire frequency from sedimentary charcoal. Paleofire was reconstructed from a 
combination of microscopic particulate charcoal counts and frequency analysis of charcoal layers visually iden-
tified in sediment thin sections under transmitted light (Supplementary Fig. S2). Particulate charcoal fragments 
above 10 μ m were counted on slides prepared for palynological analysis. A minimum of 2000 charcoal particles 
were counted per sample and abundance relative to an exotic marker, Lycopodium, was calculated. Charcoal 
counts were normalized to time (particles/cm2/yr) using the same approach as for levoglucosan. Fire frequency 
was estimated using visual identification of annual charcoal layers in sediment thin sections under transmitted 
light. Previous work on the laminations from Lake Bosumtwi has demonstrated that they are annual in nature and 
visible charcoal occurs as a distinct layer within many of the annual laminations, suggesting that the charcoal is 
deposited after seasonal fire events, rather than being remobilized material from fires occurring in previous years .  
Charcoal layer frequency analysis was performed on a single continuous set of thin sections spanning the record. 
Reproducibility was assessed via replication over a several short, overlapping intervals.
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