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Minimum entropy decomposition: Unsupervised
oligotyping for sensitive partitioning of high-
throughput marker gene sequences

A Murat Eren, Hilary G Morrison, Pamela J Lescault, Julie Reveillaud, Joseph H Vineis
and Mitchell L Sogin
Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory,
Woods Hole, MA, USA

Molecular microbial ecology investigations often employ large marker gene datasets, for example,
ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities.
Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries
that sometimes include nearly identical sequences. Computational approaches that rely on pairwise
sequence alignments for similarity assessment and de novo clustering with de facto similarity
thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution
descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a
computationally efficient means to partition marker gene datasets into ‘MED nodes’, which
represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses
only the information-rich nucleotide positions across reads and iteratively partitions large datasets
while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea
cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key
Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and
revealed that these closely related sympatric sponge species maintain distinct microbial
communities. MED analysis of a previously published human oral microbiome dataset also revealed
that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral
cavity. The information theory-guided decomposition process behind the MED algorithm enables
sensitive discrimination of closely related organisms in marker gene amplicon datasets without
relying on extensive computational heuristics and user supervision.
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Introduction

Marker gene analyses of microbial diversity require
categorizing DNA sequences into ecologically
meaningful units. The two major approaches for
partitioning large datasets include: (i) taxonomic
classification of sequences through comparison with
curated databases, for example, GreenGenes
(DeSantis et al., 2006; McDonald et al., 2012) or
SILVA (Pruesse et al., 2007; Quast et al., 2013) and
(ii) de novo clustering by sequence similarity to
define operational taxonomic units (OTUs). The
number of unique taxonomic assignments in
reference databases limits diversity descriptions
because microbiologists have not defined a unified
species concept (Gevers et al., 2005; Doolittle
and Zhaxybayeva, 2009) and molecular databases

generally lack discrete name assignments for
the astonishing number of uncultured microbes
(Stewart, 2012). In contrast, taxonomy-independent
OTU clustering divides datasets into OTUs without
requiring a curated taxonomic database (Sun et al.,
2012). Database independence frees OTU clustering
approaches from the apparent limitations of taxon-
omy and allows the detection of organisms that have
not yet been characterized (Ley et al., 2006).

FastGroup, among the first published algorithm to
assign sequences to OTUs, described the three major
steps employed by most contemporary OTU finding
algorithms: ‘(1) compare all the sequences in a
dataset to each other, (2) group similar sequences
(4¼ 97% identical to each other) together, and
(3) output a representative sequence from each
group’ (Seguritan and Rohwer, 2001). During the
last 10 years, various de novo approaches have
facilitated OTU identification, including algorithms
that typically use pairwise alignments to compute a
distance matrix before grouping sequences into
OTUs (DOTUR (Schloss and Handelsman, 2005),
ESPRIT (Sun et al., 2009), SLP (Huse et al., 2010),
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HPC-CLUST (Matias Rodrigues and von Mering,
2014)) as well as greedy but more computationally
efficient heuristics that perform sequence compar-
ison and OTU identification simultaneously
(i.e., ESPRIT-Tree (Cai and Sun, 2011), CD-HIT
(Li et al., 2001), UCLUST (Edgar, 2010), DySC
(Zheng et al., 2012)). Various software platforms,
including mothur (Schloss et al., 2009), QIIME
(Caporaso et al., 2010), CD-HIT Suite (Huang et al.,
2010) and VAMPS (Huse et al., 2014), have adopted
most of these OTU identification strategies.

Pairwise sequence identity computes the number
of mismatched nucleotides between two aligned
reads. However, random PCR or sequencing errors
reduce the similarity between two sequences and
result in false OTUs even after stringent quality
filtering (Huse et al., 2007; Quince et al., 2009; Eren
et al., 2013b). To lessen the impact of sequencing
errors and subsequent OTU inflation, researchers
use relaxed identity thresholds for de novo
clustering. For example, the de facto 97% identity
often defines the diversity of clusters for 16S rRNA
data. Although it reduces the number of observed
OTUs, it also generates phylogenetically mixed
OTUs (Koeppel and Wu, 2013). Such OTUs
aggregate distinct organisms and conceal ecologi-
cally important findings (Eren et al., 2013a).

Not all nucleotide positions in a dataset contri-
bute equally towards partitioning marker gene
data into ecologically meaningful units. Woese
(Woese et al., 1985) used short, informative oligo-
nucleotide signatures in the 16S rRNA gene to
distinguish between major bacterial clades. As
recently described, oligotyping (Eren et al., 2013a)
also employs a form of signature analysis by using
Shannon entropy (Shannon, 1948) to distinguish
biologically meaningful signals from noise without
requiring the calculation of pairwise sequence
similarity. By relying on information-rich variable
sites and discarding low-entropy nucleotide posi-
tions in a group of sequencing reads, oligotyping
facilitates the identification of closely related but
distinct organisms that may differ by as little as one
nucleotide over the sequenced region of the 16S
rRNA gene.

Oligotyping different high-throughput sequencing
datasets has resolved unexplained diversity
within taxa and OTUs (Eren et al., 2011; Mclellan
et al., 2013; Apprill et al., 2014; Eren et al., 2014;
Maignien et al., 2014; Reveillaud et al., 2014).
However, oligotyping has characteristics that
sometimes limit its applicability to environmental
datasets. First, oligotyping performs optimally when
applied to closely related taxa as the great number of
high-entropy locations among distantly related
organisms renders the supervision step arduous
(Eren et al., 2013a). Second, oligotyping requires a
preliminary OTU clustering or taxonomic classifica-
tion to identify closely related taxa suitable for
analysis. Oligotyping is not a stand-alone approach
and its improvements cannot be applied directly to

the entirety of a sequencing dataset. Nevertheless,
oligotyping shows the potential of entropy to
partition mixed information into homogenous units
by using a fraction of available sequencing data, and
without pairwise sequence alignment and comparison
(Figure 1).

We have developed and employed a new algo-
rithm, ‘Minimum Entropy Decomposition’ (MED), to
partition high-throughput sequencing datasets into
ecologically meaningful and phylogenetically
homogeneous units by extending the underlying
principles of oligotyping to entire marker gene
datasets. MED uses information uncertainty among
sequence reads to iteratively decompose a dataset
until the maximum entropy criterion is satisfied for
each final unit (i.e., until there is no entropy left to
explain; Figure 2). In contrast to oligotyping, MED
requires no user supervision, no preliminary classi-
fication or clustering result, and can be applied to
the entire dataset instead of only a group of closely
related taxa.

We used two datasets to demonstrate the utility
of MED: a new V4-V5 rRNA gene dataset from
previously described host microbiomes of deep-sea
sponges (Reveillaud et al., 2014) and a publicly
available human oral microbiome dataset (The
Human Microbiome Project Consortium, 2012b).
We compared MED analysis results to taxonomic
analysis and de novo OTU clustering using QIIME
with UCLUST, which among several methods, has
often been used in studies of the Human Micro-
biome Project (The Human Microbiome Project
Consortium, 2012a) and the Earth Microbiome
Project (Gilbert et al., 2010).

Materials and methods

Minimum Entropy Decomposition
The algorithm iteratively partitions a dataset of
amplicon sequences into homogenous OTUs (‘MED
nodes’) that serve as input to alpha- and beta-
diversity analyses. MED inherits the core principle
of oligotyping (Eren et al., 2013a) and uses Shannon
entropy to identify information-rich positions
within an internal node. Entropy increases propor-
tionally to the amount of variability in a nucleotide
position and MED uses high entropy positions to
decompose a node into child nodes. A nucleotide
position that directs a decomposition step will have
zero entropy in child nodes. Hence, the increasing
number of identified nodes decreases the cumula-
tive entropy in the dataset (Figure 1). For each cycle
of decomposition, an entropy profile that does not
contain any discernible entropy peak defines the
stop condition of the algorithm for a given node. If a
node’s entropy profile is not uniform, indicating that
it has not converged, MED will decompose the node
further. Figure 2 gives an overview of the algorithm.

The MED algorithm operates on high-throughput
sequencing datasets without requiring an initial
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DNA sequence alignment step. Like oligotyping,
MED requires length differences among sequenced
reads to represent biologically meaningful variation
rather than indels derived from systematic sequen-
cing errors such as homopolymer indel events

commonly encountered with 454/Roche technology.
If read length differences represent biologically
meaningful variation, appending gap characters to
the short reads would be sufficient to finalize the
data; otherwise, an alignment step would be

Figure 2 Flowchart of the MED loop. The input dataset is decomposed into internal MED nodes using high-entropy positions. An
internal node is converged if no discernible entropy peak is left for further decomposition and is called a final or terminal MED node.

Figure 1 Decomposing a mock dataset of 10 reads using Shannon entropy. Each panel displays reads (identical reads have the same
color) within individual nodes, the corresponding entropy profiles (indicated by black bars at each position) and the total entropy value
for all reads in the node. Between steps, any node that has a Shannon entropy value greater than 0 is decomposed using only the
nucleotide position corresponding the highest or left-most entropy position, assuming the left-most side of the read represents the higher
quality end. When a node is decomposed, entropy is reanalyzed for the newly generated nodes. In this mock example, two
decomposition steps identified final units with each step using one entropy location.
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necessary. A terminal MED node corresponds to a
high-resolution OTU identified through a decom-
position process that resembles a bifurcating tree,
rather than through a de novo clustering strategy.
The algorithm can detect biologically meaningful
differences between closely or distantly related
sequences in large datasets without requiring CPU-
intensive alignment. Although subsampling is not
mandatory for MED, it must be considered if the
number of reads across samples in a dataset differ by
multiple orders of magnitude to avoid biases in
entropy results. The MED pipeline assumes that the
input dataset is quality-filtered. Most widely used
quality-filtering approaches trim low-quality ends of
sequencing reads (Minoche et al., 2011; Bokulich
et al., 2013); to eliminate artificial read length
variation for MED analysis, reads that require
trimming should be discarded prior to analysis.

MED (see Figure 2) initially adds the input dataset
(Step 1) to the decomposition pool as a node for
analysis. The ‘decomposition pool’ represents a
transient collection of nodes that have not yet
converged. An MED node (Step 4) has converged if
it has a flat entropy profile. The algorithm iteratively
evaluates entropy for internal nodes until exhaus-
tion of the decomposition pool (Step 2). At each
iteration, MED removes a single node from the pool
for analysis. The removed node is either discarded,
identified and stored as a final MED node, or further
decomposed into child nodes that are added to the
decomposition pool. MED discards nodes that do
not satisfy the minimum substantive abundance (M)
criterion (Step 3). It uses M to filter noise as
described for oligotyping (Eren et al., 2013a): if the
most abundant unique sequence of a node is smaller
than the user-defined value of M, MED will remove
it from the analysis. We recommend setting M to
N/10 000 or larger, where N equals the number of
reads in the dataset. A node that satisfies M is
subjected to Shannon entropy analysis to identify
information-rich positions (Step 4), and the node is
identified as a terminal node if it has a flat entropy
profile. Owing to sequencing errors, entropy is
rarely zero for a given nucleotide position in large
nodes, hence MED uses a threshold (m), below
which entropy is treated as zero. The m parameter is
determined dynamically during the runtime for
each node, and by default it decreases from 0.0965
(the expected entropy generated by a sequencer with
1% error rate) proportional to the ratio of the size of
a node and the frequency of the most abundant
unique read in the dataset. The following equation
demonstrates the default m heuristics in the MED
algorithm developed empirically based on our
experience with Illumina HiSeq and MiSeq datasets,

m0 ¼ m�
ffiffiffiffiffiffiffiffi
mn

2N

r

where m’ is the normalized m for a node with n
reads found in a dataset where the frequency of the

most abundant unique read is N. If the entropy
profile of a node is not minimal, that is, there exists
one or more entropy peaks greater than the normalized
m, MED proceeds to decompose the node (Step 5).
The parameter c defines the maximum number of
nucleotide positions with entropy values greater
than m for decomposing every node throughout the
MED process. A small c requires additional itera-
tions to reach convergence, whereas a large c would
discard more reads according to the M criterion. In
our implementation of MED, we determined 4 to be
a reasonable default for c; however, the user can
select a different value. When an intermediate node
is decomposed (Step 5), the resulting child nodes
join the decomposition pool for subsequent itera-
tions of MED analysis. This loop continues until all
nodes are analyzed and the decomposition pool is
empty. Along with basic visualizations and reports,
a completed MED run will generate standard output
files (e.g., observation matrices, FASTA files for
representative sequences and network descriptions).
Source code and user manuals for MED can be found
at http://oligotyping.org.

Sample collection and handling

Sponge data. We sequenced the V4-V5 region of
bacterial rRNA genes from 19 deep-sea sponge and 5
control water samples. Samples were collected at
locations along 45000 km of the European margins
and spanned wide bathymetric gradients (130–
958 m) (Reveillaud et al., 2014).

Human Microbiome Project data. The Human
Microbiome Project Consortium (2012a) describes
the sample collection and pyrosequencing of the
oral microbiome dataset. Of the 242 individuals who
participated in the study, we included only indivi-
duals who were sampled at each oral site (n¼ 148
for V3-V5 data) (Eren et al., 2014).

Library preparation and sequencing
We constructed amplicon libraries from sponge samples
that span the V4-V5 16S rRNA region (Supplementary
Methods). Supplementary Table S1 describes the 16S-
specific primers and the sequencing adaptors for
paired-end sequencing on the Illumina MiSeq platform
(Illumina Inc., San Diego, CA, USA) using 2� 250
cycles. V3-V5 pyrosequencing reads (250nt in length)
from a publicly available oral microbiome study (The
Human Microbiome Project Consortium, 2012b) repre-
sent samples from nine sites in the human mouth and
pharynx (subgingival plaque, supragingival plaque,
buccal mucosa, keratinized gingiva, tongue dorsum,
hard palate, saliva, palatine tonsils and throat).

Quality filtering
We merged and quality-filtered the partially over-
lapping V4-V5 paired-end reads of the sponge
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microbiome dataset using our Illumina Utilities
library (https://github.com/meren/illumina-utils;
see Supplementary Methods). To minimize the
impact of read count variation, we randomly sub-
sampled the sponge dataset to a maximum of 20 000
reads per sample. After quality filtering and subsam-
pling, the sponge dataset represented 373 474 reads
from 24 samples. Supplementary Table S2 reports the
number of raw and quality-filtered reads per sample.
VAMPS (Huse et al., 2014) posts the filtered sponge
datasets under project ID MER_MED_Bv4v5 and the
NCBI Sequence Read Archive hosts the unprocessed
sequences under accession SRP042371. The Human
Microbiome Project oral microbiome dataset from
1332 samples (9 oral sites sampled from 148
individuals) initially contained 47 M quality-filtered
reads. The Human Microbiome Project Consortium’s
quality filtering method removed reads with one or
more ambiguous base calls and those with a homo-
polymer of 8 nt or longer. Reads trimmed from the 30

end used a sliding window of average quality score
(The Human Microbiome Project Consortium, 2012a).
We re-trimmed the data to a consistent length of
B235 nt and discarded short reads (Eren et al., 2014),
resulting in 5 926 860 quality-filtered reads.

Taxonomic classification, OTU clustering and MED
analyses
We used GAST (Huse et al., 2008) to assign taxonomy
to our reads individually. For OTU clustering, we
used QIIME v1.5 (Caporaso et al., 2010) with
UCLUST (Edgar, 2010) in de novo mode via the
pick_otus.py script. We ran UCLUST with default
parameters and generated clusters with 97% similar-
ity threshold. We used the open-source MED pipeline
version 1.2 for MED analysis. To filter noise, we set
the minimum substantive abundance criterion (M) to
100. We removed GAST taxa and OTUs that were
represented by fewer than 100 reads for compar-
ability to the MED results. To assess the performance
of MED with respect to UCLUST, we subsampled
the oral microbiome dataset incrementally and
analyzed each file separately with both methods.
We used the default parameters for both, except for
the addition of the —quick flag for MED to time
the raw decomposition. ‘Unit’ refers to the end
product of a partitioning method: a GAST taxon,
an OTU, an oligotype or an MED node. The most
abundant unique sequence will represent each
unit. Supplementary Table S2 and S3 report
observation matrices and representative sequences
for each method.

Statistical analyses and visualization
We evaluated sample group variances in the sponge
microbiome and human oral microbiome datasets
explained by each method using the betadisper
function in the vegan package (Anderson, 2006) for
R (R Core Team, 2013) and reduced distances

produced from Horn dissimilarity coefficients to
principal coordinates, which embeds sample coor-
dinates in Euclidean space. Non-parametric multi-
variate analysis of variance on the dataset coordinates
(using the ADONIS function in the vegan package
identified the ratio of between-group variance to
within-group variance and the proportion of total
variation associated with different sites in the human
oral cavity. To investigate the recovery of previously
identified taxa, we searched the representative
sequences of taxa, OTUs and MED nodes in the oral
microbiome dataset against the Human Oral Micro-
biome Database (HOMD) (Chen et al., 2010) version
12.0 (obtained from http://www.homd.org on 23
April 2014), using blastn (Altschul et al., 1997)
v2.2.26þ . We performed network analyses using
Gephi (Bastian et al., 2009) with ForceAtlas2 layout
(http://gephi.org). We used http://raw.densityde-
sign.org/ to visualize alluvial diagrams.

Results

MED resolves microbiome differences between two
closely related deep-sea sponge species
The deep-sea sponge cryptic species Hexadella
dedritifera and H. cf. dedritifera are distinguishable
only through genetic surveys (Reveillaud et al., 2010).
We analyzed the microbiomes of six H. dedritifera, 13
H. cf. dedritifera and 5 local water samples. Analysis
of 373 474 quality-filtered reads with GAST, OTU
clustering and MED detected 80 taxa, 91 OTUs and
187 MED nodes, respectively. GAST mapped nearly
50% (186 562 sequences) of the reads to the class
Gammaproteobacteria, which accounts for 84.5% and
91.3% of the reads in H. dedritifera and H. cf.
dedritifera, respectively (see Figure 3). UCLUST
identified one dominant cluster, OTU #0, containing
96.2% of all reads that GAST mapped to the
Gammaproteobacteria class-level. The relative abun-
dance of OTU #0 ranged from 28.5 to 93.3% (average
71.7%) in H. cf. dedritifera, and ranged from 24.3 to
86.5% (average 63.5%) in H. dedritifera. OTU #0, the
most abundant OTU in both cryptic species
represented most of the overlap between the Hex-
adella spp. bacterial communities. Thus OTU analy-
sis showed little improvement over taxonomic
analysis (Figure 3). However, MED split OTU #0 into
two terminal nodes that showed strong differential
distribution between the two Hexadella species. MED
Node 703 significantly associated with H. cf. dedri-
tifera, whereas MED Node 166 significantly asso-
ciated with H. dedritifera. Representative sequences
of these two MED nodes showed only 3 nt differences,
or 99.2% sequence identity.

Improved partitioning of oral microbiome sites by MED
and oligotyping
We re-analyzed an oral microbiome dataset of B6
million V3-V5 rRNA sequences (The Human
Microbiome Project Consortium, 2012a) using taxa,
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de novo OTUs and MED nodes. The previous report
of 481 oligotypes (Eren et al., 2014) compares to
GAST and clustering detection of 122 taxa and 329
OTUs, respectively. Using the same dataset, MED
identified 858 terminal nodes. UCLUST analyzed
the oral microbiome dataset two times faster than
MED, which took B25 min in our simulation.
Runtimes for both algorithms increased linearly
with increasing number of reads (Supplementary
Figure S1). Figure 4 demonstrates the tree-like
topology of the decomposition process with inter-
mediate and terminal nodes identified in the oral
microbiome dataset. Multivariate analysis of var-
iance compared the captured proportion of variation
in this dataset associated with the oral sites using all
four methods. Multivariate analysis of variance
analysis of the same dataset produced two compar-
ison metrics: F-ratio and R2. Increasing similarity of
samples collected from the same oral site compared
to samples collected from other sites increases the
F-ratio. The R2 value indicates the proportion of
total variation captured by the model. Oligotyping
and MED partitioned the dataset with increased
resolution relative to taxon-based and OTU-based
analyses (Figure 5).

MED recovers more organisms from the HOMD
The curated HOMD holds 688 near-full-length rRNA
gene reference sequences for microbial taxa isolated
from healthy and diseased human oral cavities
(Dewhirst et al., 2010). We evaluated the ability of
the four analytical methods to identify known oral

microbes. We compared each sequence in the oral
microbiome dataset with the HOMD and recovered
516 matches with 100% identity and coverage. Of
these, 248 occurred more than 100 times in our dataset.
This defines the maximum number of HOMD taxa that
we can identify in the oral microbiome dataset that
contain at least 100 members in a taxonomic group,
cluster or node. The remaining perfect hits to the
HOMD that occurred fewer than 100 times represented
0.056% of the oral microbiome dataset. BLAST queries
using representative sequences of each taxon, OTU
and MED node identified 67, 112 and 235 matches,
respectively, to sequences in the HOMD database using
the criteria of 100% identify and coverage. When we
limited our comparison to only the 329 most abundant
MED nodes, numerically equal to the 329 OTUs found,
the MED nodes still matched more HOMD taxa (138)
than did the OTUs (112). Representative sequences of
taxa, OTUs and MED nodes, respectively, identified
27%, 45% and 95% of the strains described in HOMD
using sensitivity settings of 100 or more occurrences.
By partitioning a dataset of B6 M reads into 858
terminal nodes, MED recovered 95% of what the
unique reads would have recovered at the same
sensitivity.

MED nodes are ecologically relevant
The larger number of exact sequence matches to
the HOMD reference database for MED nodes
(235 matches) relative to OTUs (112 matches) from
the oral microbiome dataset reflects MED’s ability
to partition the data into more phylogenetically

Figure 3 Network analysis of Hexadella spp. and water column samples with respect to identified taxa, 3% OTUs and MED nodes. The
bottom panel shows the percent abundance of taxon Gammaproteobacteria, OTU #0 and two MED nodes among sample groups and the
total entropy contained in each unit. Only the MED analysis distinguished between the overlapping microbiomes of closely related
Hexadella species.
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homogeneous units. To investigate the impact of an
increased number of units on ecological inference,
we explored the source OTUs and taxa for reads that
make up the most abundant 100 MED nodes using
an alluvial diagram (Figure 6). A total of 4 936 104
reads (83% of the entire dataset) accounted for the
100 most abundant MED nodes. For clarity, we did

not draw connections that corresponded to fewer
than 1000 reads. This analysis accounted for 29
taxonomic groups and 57 OTUs. In most cases,
individual taxa split into multiple OTUs, which
then split into multiple MED nodes. However, we
observed at least one example where the genera
Actinobacillus and Pasteurella (taxa #13 and #14 in

Figure 4 The topology of the MED process. The top panel shows the decomposition of the oral microbiome dataset composed of B6 M
reads into intermediate and final nodes by MED. Two final nodes in the topology are marked (nodes #2865 and #2866) and the bar-chart
plot shows the their distribution across oral sites in human mouth; subgingival plaque (SUBP), supragingival plaque (SUPP), saliva (SV),
palatine tonsils (PT), keratinized gingiva (KG), throat (TH), buccal mucosa (BM), hard palate (HP) and tongue dorsum (TD). The lower
panel shows the alignment for the representative sequences of the two nodes, which are 99.2% identical.
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Figure 6) converged into one OTU. Sometimes all
three methods agreed; for instance, reads that
resolved to either Catonella or Oribacterium (Taxon
#1 and #4 in Figure 6) also resolved to one OTU, and
one MED node. We further investigated reads that
resolved to Rothia and Porphyromonas by consider-
ing their ecological context. All Porphyromonas and
all Rothia reads mapped to single OTUs, yet MED
split each of these OTUs into multiple terminal
nodes (3 and 5 nodes, respectively). The distribution
of MED nodes in both cases displayed differential
distribution among oral sites (Figure 6). For example,
MED node #2866 identified a group of Rothia that
did not occur in plaque. However, MED node #2865
represents 450% of the Rothia taxa in plaque, but
lower fractions of the Rothia populations from other
oral sites. Despite their differential site distribution,
MED nodes #2866 and #2865 (Figure 4) differ by
only two nucleotides (99.2% sequence identity).
Similarly, MED nodes classified to Porphyromonas
show distinct distribution patterns of very closely
related taxa that did not resolve by OTU clustering
or taxonomic analysis. Supplementary Figure S2
provides additional examples of meaningful MED
node distribution patterns for Streptococcus, Fuso-
bacterium, Neisseria and Bacteroides.

Discussion

MED partitions large marker gene datasets into
terminal nodes that can share higher levels of
sequence similarity than OTU clusters. MED identi-
fied organisms in two example datasets that differ by
only a few nucleotides, yet distribute differently
across environments, and recapitulated published
oligotyping results. Instead of requiring pairwise
sequence alignment or taxon assignments, MED uses
a fraction of the available nucleotide variation in an

iterative process that relies upon the most informa-
tion-rich sites to decompose large datasets.

In our sponge microbiome analysis, MED detected
substantial differences in microbial communities
between two closely related deep-sea sponge spe-
cies, H. cf. dedritifera and H. dedritifera that other
approaches missed. Cluster analysis identified the
highly abundant OTU #0, which included a large
number of reads that GAST mapped only to the class
Gammaproteobacteria. MED analysis of the dataset
split OTU #0 into two distinct nodes with
representative sequences that showed only 3 nt
differences (99.2% sequence identity). Although
H. cf. dedritifera and H. dedritifera can occur
sympatrically (i.e., on the Irish continental margin),
MED revealed highly specific sponge–Proteobacteria
associations at a very fine taxonomic scale. Gamma-
proteobacteria reads that cluster together in OTU #0
represent abundant and ecologically distinct
organisms that might serve different functions for
the sponge host or out-compete other variants in
response to a given host environment. Species-
specificity sometimes reflects complex genetic inter-
dependence between a host and its associated
bacteria (Bulgheresi et al., 2006; Gourdine et al.,
2007; Mandel et al., 2009; Franzenburg et al., 2013).

Unlike oligotyping, MED identifies subtle nucleo-
tide variation among high-throughput sequencing
reads without user supervision. We recently used
oligotyping to explore the diversity of very closely
related commensal and pathogenic organisms
within distinct phyla that represent more than
99% of the sequencing data in a human oral
microbiome dataset (Eren et al., 2014). Our super-
vised analysis of each major phylum revealed that
some organisms differing by as few as a single
nucleotide showed dramatically different distribu-
tions among oral sites and among individuals (Eren
et al., 2014). Here we re-analyzed the same dataset to

Figure 5 Comparison of oral microbiota sample distribution with network analysis and multivariate analysis of variance results. The
top panel shows network analysis results for each method. In each plot, dots represent oral samples from the nine oral sites. For visual
clarity, we colored plaque samples with purple, buccal mucosa with green, keratinized gingiva samples with red, and the remaining
samples from throat, tonsils, tongue dorsum, hard palate and saliva with cyan. The bottom panel shows the ratio of between-group
variance/within-group variance (F-ratio) and the proportion of total variation captured by the different oral sites defined in the model
(R2) for GAST taxonomy, OTU clustering, oligotyping and MED.
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compare oligotyping with taxonomy, OTU cluster-
ing and MED results. Our analyses showed strong
congruence between MED and oligotyping com-
pared with taxa and OTUs. MED nodes captured a
larger proportion of variation associated with differ-
ent oral sites and better described the distribution of
very closely related organisms that occupied differ-
ent niches in the human oral cavity.

Proper sequence partitioning will reduce the
number of observed units in a given dataset without
sacrificing ecological inference. In the absence of
PCR or sequencing errors, unique sequences in a
dataset would serve as ideal proxies for genomic
signatures in microbial communities. However, even

the most stringent quality-filtering methods applied
to large marker gene datasets will retain many more
unique sequences than the true number of different
organisms. Hence the dilemma: partitioning strate-
gies must account for subtle differences between
highly similar sequences to accurately represent
every organism, while not inflating the number of
observed groups artificially. A thorough comparison
of partitioning methods that strive to achieve this
goal requires determining the minimum number of
units in a dataset that accurately represent every
organism, which de novo investigations cannot
determine. However, a curated database can
serve as a reference to demonstrate how many

Figure 6 Alluvial diagram of the relationship between the top 100 MED nodes, OTUs and taxa in the oral microbiome dataset. Three
horizontal lines identify the units for a given level. The size of each black bar represents the abundance of that unit in the dataset. The total
number of reads represented in each horizontal bar is identical and makes up 83% of the oral microbiome dataset. Vertical lines demonstrate
how these reads are grouped differently by each method. The two examples in the bottom panel demonstrate the distribution of OTUs and
MED nodes associated with two taxa, Rothia and Porphyromonas across oral sites; subgingival plaque (SUBP), supragingival plaque (SUPP),
keratinized gingiva (KG), buccal mucosa (BM), hard palate (HP), saliva (SV), palatine tonsils (PT), throat (TH) and tongue dorsum (TD).
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well-described organisms each method recovers. In
our analysis of the oral microbiome, we used the
phylogenetically curated HOMD of 688 near full-
length 16S rRNA gene sequences from mostly
cultivated organisms as a reference. Among the
B230 000 unique sequences in our oral microbiome
dataset, only 248 unique sequences with a fre-
quency of 100 or higher matched an entry in
HOMD. Hence, the goal for any partitioning
method is to generate units with representative
sequences that match 248 sequences in HOMD
without inflating the total number of units. All
three unsupervised methods reduced the number of
observed units by orders of magnitude compared to
the number of unique sequences; however, MED
representative sequences recovered 95% of
expected HOMD entries, whereas the representa-
tive sequences of taxa and OTUs recovered only
27% and 45%, respectively. MED’s ability to
appropriately identify more organisms from the
oral microbiome predicts similar improvements in
analyses of other environments.

Computational heuristics for de novo OTU clus-
tering continue to improve; however, the core
concept of defining cluster membership according
to measures of sequence similarity (e.g., evolution-
ary distances, k-tuple distances, etc.) neglects the
theoretical advantages of considering only informa-
tion-rich sites in long sequence reads. The number
of nucleotide positions that can differ between two
reads in an OTU (i.e., the heterogeneity within the
OTU), increases linearly with read length. Two
100 nt sequences or two 300 nt sequences with
97% identity can cluster together, but the longer
sequence will contain on average three times as
many information-rich sites, each of which might
further resolve the cluster into additional homo-
geneous units. One solution is to increase the
similarity threshold, as previously proposed
(Stackebrandt and Ebers, 2006); however, this
approach does not scale. Although longer reads
provide increased phylogenetic resolution, they will
likely possess larger numbers of sequencing errors,
precluding the use of higher similarity thresholds.
Here, even a very conservative similarity threshold
of 99%, while greatly increasing the number of
observed OTUs, would have failed to identify
distinct microbiomes of closely related sponge
species or distinguish ecologically distinct members
of the oral microbiome that share more than 99%
sequence identity (Figure 6). The sensitivity of
computational methods that partition sequencing
datasets should be agnostic to read length and
pairwise sequence similarity.

Our MED results demonstrate the advantage of
relying on information theory rather than pairwise
sequence similarity to sensitively define ecologically
relevant units in a dataset. It differs in important ways
from commonly used clustering approaches. MED
iteratively partitions sequencing datasets of marker
genes into phylogenetically homogeneous units using

entropy, but imposes minimal computational heuristics
by disregarding sequence similarity or phylogenetic
relationships between reads. As MED does not perform
pairwise sequence alignment and similarity assessment
during decomposition, it utilizes a fraction of the
available nucleotide data in a dataset. Instead of
grouping reads based on sequence similarity, it splits
groups of reads into more refined units incrementally
based on the nucleotide positions that present dissim-
ilarities identified by the entropy analysis. These
differences allow MED to detect and explain subtle
nucleotide variation more effectively and identify
distinct organisms that are as few as one nucleotide
apart regardless of the length of the sequenced region.

No currently available method addresses every
potential artifact associated with large marker gene
datasets. Sequencing errors, PCR errors, alignment
artifacts and failure to resolve closely related taxa
lead to inaccurate assessments of microbial commu-
nity diversity and ecology. Analytical methods that
mitigate the influence of sequencing errors through
de novo clustering at a predefined level of sequence
similarity generally sacrifice sensitivity as they fail
to resolve very closely related taxa that track
ecological context. In contrast, MED provides very
a high-resolution depiction of microbial commu-
nities while recapitulating the oligotyping results
without user supervision. To eliminate ‘noise’ or
false nodes caused by sequencing error, it employs
the criterion ‘minimum substantive abundance’ (M)
to dictate the removal of any intermediate or
terminal MED nodes with a representative sequence
that occurs in the dataset less than M times.

One notable feature of MED from a computational
perspective is that individual nodes are analyzed
independently from each other throughout the
decomposition process (Figure 4). Thus the algo-
rithm eliminates the need for shared memory space
for subsequent steps of analysis, which makes
significant performance gains possible through dis-
tributed and parallel implementations. MED is a de
novo approach; therefore MED nodes, in theory, are
not comparable across studies. However, as a fully
resolved MED node will have minimal phylogenetic
mixture, to what extent the representative sequences
of MED nodes can be compared across studies
warrants further investigation.

In this study, we demonstrated the capacity of MED,
a sensitive approach that explains the diversity of
closely related organisms in high-throughput marker
gene datasets regardless of read length and percent
similarity. MED can facilitate the identification of
keystone organisms, representative sequences of
which can be used as biomarkers or guide in-depth,
hypothesis-driven genomic analyses.
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