
RESEARCH ARTICLE
10.1002/2014GC005563

Development and evolution of detachment faulting along
50 km of the Mid-Atlantic Ridge near 16.5�N
Deborah K. Smith1, Hans Schouten1, Henry J. B. Dick1, Johnson R. Cann2, Vincent Salters3,
Horst R. Marschall1, Fuwu Ji4, Dana Yoerger1, Alessio Sanfilippo5, Ross Parnell-Turner6,
Camilla Palmiotto7, Alexei Zheleznov8, Hailong Bai9, Will Junkin9, Ben Urann1, Spencer Dick10,
Margaret Sulanowska1, Peter Lemmond1, and Scott Curry1

1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA,
2School of Earth and Environment, University of Leeds and Curlew Cottage, Penrith, UK, 3Department of Geological Scien-
ces, Florida State University, Tallahassee, Florida, USA, 4School of Ocean and Earth Science, Tongji University, Shanghai,
People’s Republic of China, 5Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy, 6Bullard
Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK, 7Istituto di Scienze Marine, ISMAR-
CNR, Bologna, Italy, 8Department of Geomorphology, Institute of Earth Sciences, Saint Petersburg State University, St.
Petersburg, Russia, 9Department of Geology, University of Maryland, College Park, Maryland, USA, 10Geology and Geogra-
phy Department, Ohio Wesleyan University, Delaware, Ohio, USA

Abstract A multifaceted study of the slow spreading Mid-Atlantic Ridge (MAR) at 16.5�N provides new
insights into detachment faulting and its evolution through time. The survey included regional multibeam
bathymetry mapping, high-resolution mapping using AUV Sentry, seafloor imaging using the TowCam sys-
tem, and an extensive rock-dredging program. At different times, detachment faulting was active along
�50 km of the western flank of the study area, and may have dominated spreading on that flank for the
last 5 Ma. Detachment morphologies vary and include a classic corrugated massif, noncorrugated massifs,
and back-tilted ridges marking detachment breakaways. High-resolution Sentry data reveal a new detach-
ment morphology; a low-angle, irregular surface in the regional bathymetry is shown to be a finely corru-
gated detachment surface (corrugation wavelength of only tens of meters and relief of just a few meters).
Multiscale corrugations are observed 2–3 km from the detachment breakaway suggesting that they formed
in the brittle layer, perhaps by anastomosing faults. The thin wedge of hanging wall lavas that covers a low-
angle (6�) detachment footwall near its termination are intensely faulted and fissured; this deformation may
be enhanced by the low angle of the emerging footwall. Active detachment faulting currently is limited to
the western side of the rift valley. Nonetheless, detachment fault morphologies also are present over a large
portion of the eastern flank on crust >2 Ma, indicating that within the last 5 Ma parts of the ridge axis have
experienced periods of two-sided detachment faulting.

1. Introduction

Normal faults at slower spreading ridges may have very large offsets (tens of km to greater than a hundred
km) and account locally for 60–100% of the plate separation [e.g., Baines et al., 2008; Cannat et al., 2006; Grimes
et al., 2008; Ohara et al., 2001; Okino et al., 2004; Searle et al., 2003; Smith et al., 2006, 2008; Tucholke et al.,
1998]. These long-lived, large-offset faults (commonly referred to as detachment faults) exhume lower crustal
and upper mantle rocks. As multibeam bathymetry data coverage increases, significant advances in our
understanding of detachment faults are being made. A number of different morphologies are now associated
with oceanic detachment faulting. These include the well-known domed, corrugated detachment surfaces,
noncorrugated massifs, highly back-tilted fault breakaways, and broad smooth hills [Cann et al., 1997; Cannat
et al., 2006; Dick et al., 2003; MacLeod et al., 2009; Schroeder et al., 2007; Smith et al., 2008; Tucholke et al., 1998].
In addition, detachment fault formation is not restricted to the ends of spreading segments; detachment faults
form anywhere along the length of a segment [e.g., Cannat et al., 2006; Smith et al., 2006, 2008], and may link
along axis over a significant portion of a ridge segment [e.g., Reston and Ranero, 2011; Smith et al., 2008].

Spreading by detachment faulting may dominate a region for several millions of years and generate broad
expanses of seafloor [Cannat et al., 1995; Escart�ın et al., 2008; Schroeder et al., 2007]. Escart�ın et al. [2008]
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estimated that active detach-
ment faulting occurs along
close to 50% of the northern
MAR axis between 12.5�N and
35�N implying that as much as
25% of new seafloor in this
region may be formed by
detachment faulting. Smith
et al. [2008] estimated that
detachment fault morpholo-
gies cover >60% of the sea-
floor on the west flank of the
13�N segment of the MAR.
More recently, it has been sug-
gested that the occurrence of
detachment faults may be
even more widespread if their
surfaces are masked by rafted
blocks [Reston and Ranero,
2011].

The formation of detachment
faults is likely dependent on a
balance between several fac-
tors, but magma input has

always been considered a key variable. Modeling suggests that detachment faults may form primarily when
the fraction of plate separation (M) taken up by magma accretion is between �0.3 and 0.5 [Buck et al., 2005;
Olive et al., 2010; Tucholke et al., 2008]. If this is the case, then in regions of the MAR where corrugated
detachment faults form in the presence of large axial volcanic ridges (AVRs) [e.g., Smith et al., 2008], M is
likely to be at the high end of the range (0.5), so that 50% of the extension would be taken up by detach-
ment faulting and 50% by magmatic accretion and minor small-offset faulting.

In this paper, we investigate the formation and evolution of detachment faulting in the 16.5�N area of the
slow spreading MAR (Figure 1), where detachment faulting has dominated the western flank of the axis for
several millions of years. Regional multibeam bathymetry, gravity, and magnetic data were collected out to
about 60 km (�5 Ma) on each side of the ridge axis. In addition, AUV Sentry collected high-resolution multi-
beam bathymetry, side scan, magnetic, CHIRP, and water column data during 14 dives. Seafloor photographs
were obtained using the TowCam imaging system during nine tows, and an extensive dredging program was
conducted. The 16.5�N study area presents excellent examples of several different morphologic expressions
of detachment faulting. Here we assess the different seafloor styles associated with detachment faults, where
detachment faults are active, how they evolve off axis, and their relationship to volcanism at the ridge axis.

2. Background

The 16.5�N study area is located �100 km north of the Fifteen-Twenty fracture zone (Figure 1). Previous
work identified two distinctive narrow ridges (East and West Ridges, Figure 2) on the western side of the
axis as the rotated breakaways of normal faults [Smith et al., 2008]. East Ridge, which is closer to the volcanic
axis, was interpreted as a newly emerging normal fault forming a rafted block on top of the older West
Ridge detachment fault. Seafloor photographs from a camera tow near the top of East Ridge show steep
fault scarps cutting pillow lavas on the upper section of the 30� inward-facing slope [Smith et al., 2008]. On
the 20� outward-facing slope, however, more or less equant pillows are observed. Because pillows that
erupt onto steep slopes are typically elongate, Smith et al. [2008] suggested that these equant pillows were
erupted on the subhorizontal surface of the rift valley floor, faulted, and rotated outward. These observa-
tions support the idea that East Ridge marks the breakaway of a rotated fault. Smith et al. [2008] also sug-
gested that if mass wasting has not significantly modified the geometry of East Ridge, then the inward-

−47˚30' −47˚00' −46˚30' −46˚00'

15˚30'

16˚00'

16˚30'

17˚00'

17˚30'

Fifteen-Twenty FZ

Fig. 2

4000 2000

20 km

Water depth (m)

60o W 40o W 20o W

0

20o N

40o N

M
AR

Figure 1. Bathymetric map of the MAR in the 16.5�N region. Inset shows the location of the
study area. Black lines: track lines of the regional survey. Black rectangle: area shown in
Figure 2.
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facing slope represents a normal fault with an initial dip angle of between 50� and 60� (obtained by sum-
ming the inward and outward dips). West Ridge has an outward-facing slope of 35�–40�, and unpublished
photographs obtained over West Ridge show pillow basalts on its top and steep scarps on its inward-facing
slope (cruise AT4-4, D.K. Smith chief scientist) supporting its identification as a highly back-tilted fault. The
corrugated massif at the south end of West Ridge was identified as a core complex.

The 16.5�N region has a high rate of seismic activity. There are 44 teleseismic earthquakes listed in the NEIC
catalog (http://earthquake.usgs.gov/earthquakes/eqarchives/epic/) between 16�120N and 17�N that have
magnitudes �4.5. In addition, 391 hydroacoustically recorded earthquakes were identified during 4 years of
monitoring [Smith et al., 2003], yielding a remarkable average of about one earthquake (rough-
ly>magnitude 2.5–3.0), every 3 days. Based on seismicity rate and their interpretation of the morphology,
Escart�ın et al. [2008] concluded that the west flank of the 16.5�N area is one of active detachment faulting.

On the eastern side of the ridge axis at 16�38.40N, a large, basalt-hosted, inactive hydrothermal vent field
(Krasnov hydrothermal field, Figure 3) has been the focus of several studies including near-bottom mapping
and sampling efforts [e.g., Bel’tenev et al., 2004; Cannat et al., 2013; Cherkashov et al., 2008, 2010; Fouquet
et al., 2008]. This hydrothermal field is the largest of the known basalt-hosted sulfide deposits and may con-
tain �12.8 million tons of sulfide ores [Cherkashev et al., 2013].

Prior to our study and within the immediate vicinity of the 16.5�N area, 11 rock samples had been collected
at the ridge axis near 16�180N and 2 at 16�360N (PetDb database; http://www.petdb.org/) [Dosso et al.,
1993]. The samples include fresh looking volcanic rocks and mafic rocks.

3. Data

SeaBeam 3012 multibeam bathymetry data were collected along the track lines shown in Figure 1, which
extend 60 km (�5 Ma) on each side of the axis. In this paper, we refer to these regional multibeam
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Figure 2. Topographic lineation map. Topographic lineations indicated by thin black lines were identified by eye in the multibeam
bathymetry data. Thick black lines mark lineations that we infer are corrugations formed during slip on long-lived faults. White lines: ridge
axis. SCC: South Core Complex. Black rectangle: area shown in Figure 3.
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bathymetry data as SeaBeam data, which are shown in Figure 2 with topographic lineations indicated. Dur-
ing the regional survey, a SeaSPY marine magnetometer and a shipboard BG-3 gravimeter collected mag-
netic and gravity data. Detailed analyses of these data will be completed as part of another study.

AUV Sentry surveys were completed over 14 patches of seafloor, each survey mapping an area of about
10 km2 (Figure 3). Areas 1 and 2 consist of multiple adjoining dives; single surveys were completed in five
other areas. Sentry flies �60–65 m above the seafloor at a speed of �0.75 kt, and was equipped with the fol-
lowing: (1) Reson 7125 400 kHz multibeam sonar; (2) Edgetech subbottom profiler—CHIRP (4–24 kHz
sweep); (3) Edgetech 120/440 kHz side-scan sonar; (4) Seabird 49 Conductivity Temperature Depth (CTD)
profiler; (5) Seapoint optical backscatter sensor; (6) Oxidation-reduction potential (ORP) sensor; (7) an elec-
trochemical (Eh) sensor supplied by K. Nakamura; (8) digital still camera with 1 megapixel resolution; and (9)
Dual 3-Axis Honeywell smart digital magnetometers. On-bottom time was typically 17–18 h. Survey boxes
were designed to obtain 100% bathymetric coverage except in Box 179 (Figure 3) where we spaced out
lines to map a larger section of seafloor. In this box, we obtained 100% coverage with the low-frequency
(120 kHz) side-scan sonar and 30% coverage with the multibeam sonar. Short photographic runs (a few
100 m along the seafloor) were completed in Box 179 and the westernmost box of Area 2 to test the capa-
bility of the Sentry digital camera.

The TowCam digital camera system was used to obtain seafloor images during nine dives (Figure 3, thick
blue lines), often operating simultaneously with Sentry. The TowCam sled was on bottom for 2–4 h and
towed at �0.3 kt about 5 m above the seafloor. A total of 14,274 images were collected during the nine
dives, each with a resolution of 16 megapixels. Water column data also were collected during the runs using
a SBE 25 Sealogger CTD profiler.

Dredging was a large component of the operations and many dredges were completed during Sentry sur-
veys. The dredge stations are shown in Figure 3 with dredge tracks indicated by black lines, and rock litholo-
gies indicated by circle fill color. We collected 2855 kg of basalt, diabase, gabbro, and peridotite in 63
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Figure 3. Bathymetric map showing the locations of the Sentry surveys, TowCam dives, and dredges. Black rectangles: Sentry survey areas.
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TowCam dives. Short black lines: dredge tracks. Filled circles: color indicates rock lithologies. Small circles: rocks collected during expedi-
tions of the R/V Professor Logatchev [Bel’tenev et al., 2006; Cherkashov, personal communication, 2013]. White lines: volcanic axis. Dashed
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successful dredges. In addition,
our Russian colleagues pro-
vided the locations and types
of rocks that they obtained in
2004–2006 during annual
cruises of R/V Professor
Logatchev [Bel’tenev et al.,
2006; G. A. Cherkashov, perso-
nal communication, 2013].
Small circles on Figure 3 show
these locations and their con-
tents. A Miniature Autonomous
Plume Recorder (MAPR, http://
www.pmel.noaa.gov/eoi/Plu-
meStudies/mapr/) was
attached to the dredge wire
during the dredge hauls and
recorded light-backscattering
(for suspended particle con-

centrations), oxidation-reduction potential (for detecting the presence of reduced chemical species such as
H2S and Fe21), temperature, and pressure.

This paper focuses on the morphological interpretation of the SeaBeam bathymetry data and the Sentry
bathymetry and side scan data. The Sentry bathymetry data have a horizontal spatial resolution of <1 m com-
pared to the SeaBeam bathymetry data, which have a resolution of 50–100 m. The difference in resolution is
illustrated in Figure 4 where Sentry bathymetry data from Box 181 (Figure 3) are overlain on our SeaBeam
bathymetry. The Sentry CHIRP data have been examined by Parnell-Turner et al. [2014]. The Sentry water column
data, and magnetic data, TowCam photographs, and dredge samples will be the subjects of separate papers.

4. Large-Scale Characteristics of the Study Area

The 16.5�N study area encompasses two spreading segments [e.g., Thibaud et al., 1998]. Both segments
have orientations of �012� , which is perpendicular to the calculated spreading direction of �102� [DeMets
et al., 2010]. The south segment extends from 16o180N to 16o40.30N, and the north segment extends from
16o40.60N to 16o550N (Figure 2). The dextral offset between the segments is �6 km. The lines drawn on the
bathymetric map in Figure 2 mark topographic lineations and show that both the east and west flanks of
the ridge axis have regions of seafloor with features whose orientations are more or less parallel to the cur-
rent spreading direction. These regions are interpreted as corrugated surfaces, which are typically associ-
ated with long-lived detachment faults. The western rift valley wall of the south segment was the main
focus of our study.

The southern unit of the valley wall is South Core Complex (SCC on Figure 2, Area 1 on Figure 3), a classic
domed, corrugated detachment fault with a slope of �13� . The termination where the fault intersects the
valley floor is �6.5 km west of the summit of a large AVR that is assumed to be the neovolcanic zone. The
corrugations on South Core Complex extend up to near the summit of the massif, and have wavelengths of
400–1600 m and relief of 50–100 m. The nearest breakaway for South Core Complex detachment is at the
crest of the massif, which implies that there has been at least 11.5 km of slip on the fault since it broke the
seafloor 3.5 km west of the volcanic axis.

The central unit is East Ridge, a 10 km long normal fault that recently developed in front of a section of South Core
Complex and West Ridge (Figure 2). We hypothesize that the sections of South Core Complex and West Ridge
behind East Ridge became inactive when East Ridge was initiated. The East Ridge fault termination is�3.5 km
from the volcanic axis and the fault has an offset of�2.5 km. The outward-facing slope of East Ridge is 20�.

The northern unit is West Ridge, which has an irregular inward-facing slope between 10� and 20�. West
Ridge extends along axis for �21 km and at its southern end continues as the crest of South Core Complex.
As mentioned above, West Ridge appears to be the breakaway of a flexurally rotated large-offset normal
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Figure 4. Sentry high-resolution bathymetry overlain on SeaBeam bathymetry. The SeaBeam
bathymetry data have been gridded at 150 m grid spacing, and the Sentry bathymetry at
5 m spacing. The Sentry bathymetry data were collected in Box 181 (marked on Figure 3)
and reveal details not seen in the regional bathymetry, including corrugations.
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fault with outward-facing slope of 35�–40�. Assuming that West Ridge originally broke the valley floor
3.5 km from the volcanic axis, West Ridge fault would have an offset of �7.5 km.

Only the southern section of north segment is included in this study (Area 2, Figure 3). The west
wall of the rift valley in Area 2 extends up three normal faults with offsets of <1 km, spaced 2–3 km
apart, which end at a small massif with a relief of 800 m (Figure 3). The outward-facing slope of the
massif is �25�–30� suggesting that its crest is the breakaway of a long-lived fault. The inward-facing
slope is 25�–35� , has no obvious corrugations, and appears eroded by mass wasting. The breakaway
of the massif continues south as a narrow ridge and curves westward to follow the offset between
the north and south segments. A notable feature here is that the eastern wall of the axial valley is
relatively straight, with little evidence of an offset, composed of what appears to be axis-parallel
lineated volcanic terrain.

5. Ridge Axis Morphology

The width of the rift valley floor varies between the south and north segments. The south segment valley
floor averages about 10 km wide, while the north segment valley floor is significantly narrower (�3–4 km in
Area 2). An AVR extends along the rift valley floor, the entire length of the south segment (Figure 5a). Its
size does not vary systematically along axis; its height ranges from 200 to 400 m and its width from 3 to
5 km. The AVR summit, though, deepens northward and is �500 m deeper in the northern part of the seg-
ment (�3600 m) than near Area 1 in the south (�3100 m). No AVR is present in the north segment where
the seafloor is much deeper (�4500 m in Area 2).

Sentry surveys were completed over four regions on the valley floor (Figure 5a). Sentry bathymetry data
from three of these surveys (Area 1, Box 184, and Area 2) are shown in Figures 5b–5d. In Area 1, Sentry
mapped the western flank of the AVR. Volcanic hummocks dominate the morphology (Figure 5b). Individual
hummocks are up to 300 m wide and up to 75 m high, and pile up to form larger features. As an example,
the mound of hummocks in the center of the Area 1 swath (Figure 5b) has a relief of �200 m. Faults with
relief of 5–20 m and spacing of only a few tens of meters cut the valley floor becoming more pervasive to
the west, systematically destroying the volcanic features until they are unrecognizable on the western edge
of the survey. Such extensive small-scale faulting is unique to Area 1. Sentry Box 184 (Figure 5c) to the north
surveyed two overlapping AVRs that are offset by �1 km. Both AVRs are built from individual piled up hum-
mocks. In Area 2, the Sentry data show a single relatively unfaulted, cratered, smooth flow �1 km wide and
�25 m high, and a pile of hummocks rising up to �100 m immediately to the south. Several hummocky
ridges (�100 m high) are seen in the western half of the survey. Faults with relief of up to 50 m cut the vol-
canic morphology. As in Area 1, the degree of faulting increases to the west, but unlike the western edge of
the valley floor in Area 1, the volcanic features in Area 2 have not been completely destroyed by 5–20 m
high closely spaced faults.

The low-frequency (120 kHz) side-scan sonar data from Sentry Box 179 are displayed in Figure 6a. Track
spacing during this survey was �600 m, which limited the bathymetric coverage to only 30% of the
area (Figure 6b). The survey covered the hanging wall (valley floor) in front of East Ridge where a flex-
ural basin has been created by fault slip. Several constructional volcanic features lie within the basin. A
large flat-top flow 1600 m in diameter and 250 m high on its western side extends west from the AVR
(Figure 6a); the flow represents �0.5 km3 of lava. Other, smaller flat-top flows are identified, some of
which appear to have been fed from the west. Seafloor photographs of the top of the large flat-top flow
show sediment covered terrain. The side-scan sonar data indicate that regions on the flank of this large
flow have less sediment cover than the top and thus, might represent more recent lava flows or debris
fans.

TowCam photographs were obtained within or near each of the Sentry surveys at the ridge axis (Figures 5a
and 7). Sediment intermingles with pillow lavas in the three camera runs along the AVR in the south seg-
ment, and striated pillows were seen in all dives (Figures 7a–7c, TC4, TC5, and TC8). The photographs at the
north end of the segment (TC8, Figure 7c) show slightly more sediment on top of the pillows, on average,
compared to the two camera runs to the south, although we have not quantified the difference. In Area 2,
seafloor photographs of the top of the smooth cratered flow (Figure 7d, TC9) show only flat, sedimented
seafloor along the length of the tow.
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6. Western Rift Valley Wall

For each of the Sentry surveys on the western flank of the ridge axis, the Sentry bathymetry data, dredge
tracks, rock types sampled, and TowCam tracks are shown in Figures 8–12. Slope maps calculated from the
Sentry bathymetry highlighting the shapes of features, as well as Sentry bathymetric profiles, are also
shown.

6.1. Area 1
Five adjoining Sentry surveys in Area 1 extend from the valley floor onto the corrugated South Core Com-
plex detachment surface to near its crest (Figure 8). The survey includes the southern end of East Ridge and
what we interpret as the inactive section of South Core Complex behind East Ridge. The topography at the
intersection of East Ridge and South Core Complex is complicated and remains to be understood. Small-
scale corrugations run from close to the top of the detachment surface downslope for �4 km. These corru-
gations have wavelengths of less than a few hundred meters and amplitudes <10 m. Several outward-
facing scarps with relief of <10 m are observed on the corrugated detachment surface. The termination of
the detachment surface behind East Ridge is sharp and easily identified. In contrast, the termination of

Figure 5. Bathymetry of the ridge axis. (a) SeaBeam bathymetric map with topographic profiles drawn across the axis. Shading on profiles: bathymetry shallower than 3000 m. White
lines: ridge axis. Black rectangles: Sentry survey locations. Blue lines: TowCam (TC) dives labeled by numbers. Sentry bathymetric maps of the valley floor are shown for (b) Area 1, (c) Box
184, and (d) Area 2. EBF: eastern boundary fault. Features discussed in the text are labeled.
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South Core Complex with the valley floor is difficult to identify because the western edge of the rift valley is
so severely faulted and fissured that it is hard to define where the volcanic morphology begins.

Several dredges completed within and near Area 1 primarily yielded basalt but also diabase, serpenti-
nized peridotite, and gabbro near the top of the massif. Five TowCam dives were completed in Area 1.
Dive TC4 imaged the AVR as described above (Figure 7a). TC1 was run across the valley floor west of the
AVR and the photographs show more extensive sediment cover than along the summit of the AVR.
Numerous cracks and faults also are observed on the photographs from TC1 consistent with the obser-
vation that deformation of the lavas increases westward from the volcanic axis. TC3 was run over the
termination of South Core Complex at the valley floor. Photographs show areas of completely sedimen-
ted seafloor, but in the western half of the run there are outcrops that look like slabs of rock that may
be the fault surface. Along the eastern half of the run there are regions of basalt rubble, cracks filled
with basalt rubble, and what appear to be in situ pillows of the valley floor. The photographs do not pin-
point the location of the fault termination, however. TC2 began near the crest of the massif and ran
onto the corrugated surface of South Core Complex. Many of the photographs show sedimented sea-
floor. Near the top of the massif there are piles of rubble, but it is hard to determine what they repre-
sent. Farther along the run, rectangular slabs, some in place, probably represent the fault surface. All of
the photographs from TC6 on the section of South Core Complex behind East Ridge show only sedi-
mented seafloor.
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6.2. Area 2
Area 2 (Figure 9) is located north of the right-lateral, nontransform offset between the south and north seg-
ments (Figure 3). As described above, there are constructional volcanic features on the valley floor, some
with relief of 100 m. The western valley wall consists of four fault blocks. The first three (f1–f3, Figure 9a)
have 1 km offsets or less and minor rotations of <13� . We infer that these are short-lived faults, each aban-
doned quickly as the next formed closer to the axis. The top of each fault block is covered by volcanic hum-
mocks and flows similar to those on the valley floor. Dredging on these blocks recovered basalt. A
noncorrugated massif is observed west of fault block 3 (f4, Figure 9a). The inward-facing scarp of this massif
is significantly modified by mass wasting, producing seafloor slopes of �30�. The headwall scars are deeply
incised, and blocks a few tens of meters wide and up to 10 m high appear to have fallen down the scarps. A
dredge on a headwall scar (Figure 9a) recovered diabase, serpentinized peridotite, and gabbro. The top of
this massif is rotated �25� outward (Figure 9b), and seafloor photographs show nearly sediment-free pillow
basalts on this slope. Presumably the pillows are swept clean of sediments by currents at the top of the
massif. We interpret the massif as a detachment fault with an offset of �4 km.

Between Areas 1 and 2, we surveyed three sections of seafloor in regions of ambiguous topography (Figure
3). Box 181 is at the base of the rift valley wall, and Boxes 182 and 183 are farther off axis. In Boxes 182
and183, the regional SeaBeam bathymetry data suggest relict corrugations.

6.3. Box 181
Sentry Box 181 is located at the base of the rift valley wall east of West Ridge (Figures 3 and 10). The
bathymetry data show a finely corrugated, low-angle detachment fault intersecting the valley floor. The cor-
rugations have wavelengths on the order of only tens of meters and just a few meters of relief (smaller than
on the South Core Complex detachment surface, see above). The termination of the detachment fault at its
intersection with the volcanic morphology of the valley floor is sharp and located �4.5 km from the vol-
canic axis. The base of the detachment surface has an average slope of 15�. Its morphology, however,
changes significantly upslope. About 1.5 km west of its termination, the detachment surface appears cov-
ered by debris, most likely shed from upslope. The seafloor then ramps up for �0.5 km at an average slope
of 20�. Farther west, the average slope is 15�, and mass wasting has degraded the fault surface producing
small, curved headwall scars with relief <30 m. Corrugations are still visible but less pronounced in this
western section of the survey. Numerous outward-facing scarps with relief <15 m have also formed here,
similar to those observed on South Core Complex (Figure 8a).

a) b)

c) d)

TC5TC4

TC8 TC9

1 m

Figure 7. TowCam digital photographs from the ridge axis. TowCam runs are shown in Figure 5a. Sediment and striated pillows are
observed in the photographs from (a) TC4 near Area 1, (b) TC5 near Box 179, and (c) TC8 near Box 184. (d) TC9 in Area 2 was run along the
top of the smooth cratered flow marked on Figure 5d, and all photographs show sedimented seafloor.
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Two dredges were made within the region of Sentry Box 181 (Figure 10a). One was on the lower corrugated
surface and the other was conducted slightly south of the Sentry box farther upslope. The two dredges con-
tained diabase, diabase breccia, and serpentinized peridotite.

6.4. Box 182
Box 182 is located behind West Ridge (Figures 3 and 11) where the SeaBeam bathymetry data suggest
large-scale corrugations (wavelength of several kilometers). The Sentry bathymetry data show a landscape
profoundly affected by mass wasting. Large sections of the high on the western side of the survey box have
collapsed into the depression on the east, leaving large scars. The relief on the headwall scars reaches up to
200 m. Two adjacent semicircular collapses, each nearly 1 km wide, created a spur between them reaching
out to the east. It is likely that the spurs are features that we identified previously as corrugations. No vol-
canic features are observed in this region, and as in the region of mass wasting in Area 2, blocks a few tens
of meters wide are scattered over the landscape. Gabbro and serpentinized peridotite were sampled within
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and close to this survey area indicating that the seafloor behind West Ridge is a detachment surface that
has experienced significant mass wasting as it moved off axis.

6.5. Box 183
Box 183 is located over a section of West Ridge behind East Ridge (Figures 3 and 12). Sentry bathymetry
data indicate that this region has experienced mass wasting similar to that in Box 182. A large slump block
is marked in Figure 12a. The associated headwall scar is �1 km wide with a relief of �100 m. This headwall
scar and other scars along the eastern slope of West Ridge have produced large spurs between them, which
can be seen in the SeaBeam bathymetry data. Rockslides and a field of large blocks similar to those identi-
fied in Area 2 and Box 182 are also seen in the Sentry bathymetry. A number of dredges were completed
within and near to Box 183 and yielded basalt, diabase, serpentinized peridotite, and gabbro.

7. Faulting on the Western Flank of the Ridge Axis

To understand the spreading history in the 16.5�N region, we interpret the subsurface faulting along four
SeaBeam bathymetric profiles in Figure 13. The profile locations are indicated in Figure 3. Each profile is
�30 km long and modeled following Schouten et al. [2010]. The shapes of the faults are based on the flex-
ural fault rotation model of Buck [1988], who showed that as faults continue to slip they rotate outward,
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dome upward, and flatten to near horizontal. Long-lived detachment faults may be covered by rafted
blocks, which are slices of hanging wall from the valley floor cutoff by normal faults that root in the same
primary fault [Buck, 1988]. Rafted blocks are uplifted and rotated with the footwall and carried away from
the axis [Reston and Ranero, 2011; Smith et al., 2008]. In most cases, it is difficult to determine from the mor-
phology alone whether a new fault at the axis is a rafted block or whether the older detachment ceased
extending and a new detachment developed. Therefore, we present two interpretations for each profile:
one of discontinuous faulting and the other of faulting on a single detachment and the formation of rafted
blocks.

7.1. Profile 1—South Core Complex
Profile 1 runs from the valley floor through Area 1 and continues west of the crest of South Core Complex.
In the discontinuous model (Figure 13a), an older detachment stops slipping and normal two-sided
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directions (E, W, N, S). Labels as in Figure 10a. (c) Bathymetric profile along the black dashed line in Figure 10a. Seafloor slopes are marked.
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magmatic spreading occurs for a few kilometers of half spreading. The breakaway of the new normal fault
rotates outward and the detachment surface domes upward as it continues to extend to form South Core
Complex. Alternatively, in the continuous model, a single detachment fault has existed for �1.5 Ma, assum-
ing a half-spreading rate of 12.5 km/Ma. The top of South Core Complex is the breakaway of a rafted block
that roots into the original detachment surface. Diabase and serpentinized peridotite were dredged west of
South Core Complex consistent with the interpretation that a detachment surface is exposed there. Basalt
was also dredged in this region and most likely is from the rotated section of valley floor on the outward-
facing slope of South Core Complex.

7.2. Profile 2—East Ridge
Profile 2 is �7 km north of Profile 1 (Figure 3), and extends from the volcanic axis, through Box 179, across
East Ridge, through Box 183, and across West Ridge (Figure 13b). In the discontinuous model, an earlier
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detachment fault stops slip-
ping. After a period of normal
magmatic spreading, West
Ridge detachment forms. It too
stops slipping and normal two-
sided magmatic spreading
occurs for several km before
East Ridge fault forms. In the
continuous model, both West
Ridge and East Ridge are rafted
blocks on a single detachment
that has existed for at least
1.7 Ma.

7.3. Profile 3—West Ridge
Profile 3 is �12 km north of
Profile 2 and runs across the
valley floor near to Box 184,
through Box 181, and extends
westward close to Box 182
(Figure 13c). In the discontinu-
ous model, an older detach-
ment stops slipping and
normal two-sided magmatic
spreading occurs for a short
period. West Ridge fault forms
next, rotating outward as it
slips. The section of magmatic
crust created during the period
between faulting is rafted up
the rift valley wall. In this inter-
pretation, it is possible that the
ramp identified in Box 181 (Fig-
ure 10) marks the base of
crustal material.

In a continuous faulting
model, West Ridge fault
bounds a rafted block. In this
interpretation, the original
detachment fault has been
slipping for at least 1.7 Ma. If
West Ridge is a rafted block, it
is possible that the ramp,
instead of marking the base of

the crust as in the discontinuous model, may mark the deep tip of the rafted block lying on the original
detachment surface.

7.4. Profile 4—North Segment
Profile 4 runs through Area 2 in the north segment (Figure 13d). In the discontinuous model, an earlier
detachment fault stops slipping and two-sided magmatic spreading occurs. A new detachment fault ini-
tiates and forms the small massif on the western edge of Area 2. This detachment has an offset of �4 km; it
stops slipping at �0.3 Ma after which three successive short-lived faults form. In a continuous faulting
model, the massif is a rafted block that roots into an older detachment fault that has been slipping for at
least 1.7 Ma. As in the discontinuous model, however, the Area 2 detachment fault stops slipping at �0.3
Ma, and three short-offset faults form.
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8. Discussion

8.1. Detachment Fault Morphologies at 16.5�N
At the slow spreading MAR, oceanic detachment faults exhibit several morphologies in the regional
bathymetry data. The classic domed, corrugated detachment fault surfaces are easily recognizable, and
lower crustal and upper mantle rocks have been drilled and sampled from many of them [Blackman et al.,
2006; Cann et al., 1997; Dick et al., 2008; Tucholke et al., 1998]. Noncorrugated massifs from which lower
crustal and upper mantle rocks have been obtained are also interpreted as detachment faults [e.g., Dick
et al., 1981]. Examples of noncorrugated massifs include the TAG massif at 26�N, associated with a steeply
dipping zone of earthquakes reaching 7 km below the spreading axis, apparently marking the subsurface
detachment fault [deMartin et al., 2007], and several massifs in the region south of the Fifteen-Twenty frac-
ture zone [Schroeder et al., 2007] including Logatchev at 14�450N [Cherkashov et al., 2010]. Finally, narrow lin-
ear ridges that are formed as the breakaway of long-lived faults rotate outward are important indicators of
detachment faulting [MacLeod et al., 2009; Smith et al., 2008]. In our survey area, South Core Complex is a
classic corrugated detachment surface. The detachment fault at the western edge of Area 2 is an example
of a noncorrugated massif. East and West Ridges are back-tilted ridges marking fault breakaways.

The Sentry survey within Box 181 (Figure 10) revealed a new detachment fault morphology. The irregular,
low-angle rift valley wall seen in the SeaBeam bathymetry is in fact, a finely corrugated detachment fault
surface with a sharp termination at the valley floor. The corrugations have a wavelength of tens of meters
and relief of a few meters. Fine-scale corrugations have been observed previously on detachment surfaces
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[Blackman et al., 2002; MacLeod et al., 2002, 2009; Mallows and Searle, 2012], but only on those surfaces that
also have larger-scale corrugations. Thus, it is likely that some of the other areas along the MAR previously
interpreted as low-angle and irregular surfaces may in fact be long-lived detachment surfaces with expo-
sures of finely corrugated fault surfaces.

As described in the previous section, rafted blocks are sections of hanging wall (valley floor) cutoff by nor-
mal faults that root into a primary detachment fault. As they are carried off axis, rafted blocks are uplifted
and rotated with the detachment footwall. Rafted blocks have been imaged seismically on older Atlantic
seafloor crust [Reston and Ranero, 2011], and their formation is probably common in the oceans. Reston and
Ranero [2011] suggested that it may be difficult to recognize the morphology of detachment faulting in
those areas where the exhumed detachment surface is covered by rafted blocks. As shown here and in pre-
vious studies, the breakaways of rafted blocks rotate outward to form narrow ridges that are similar to the
ridges that mark the rotated breakaways of new long-lived faults [Schouten et al., 2010; Smith et al., 2008].
Thus areas of detachment faulting will still be recognizable by the large outward rotation (>25�) of the fault
blocks. As shown in Figure 13, however determining whether a narrow ridge marks the breakaway of a
rafted block or that of a new detachment fault from the morphology alone is difficult.

8.2. Axial Processes
The outward rotation of normal faults with increasing extension, from small offset faults to long-lived
detachments, has been described using models of fault flexure [e.g., Buck, 1988]. Such models require an
estimate of the effective elastic thickness of the axial lithosphere, Te, which specifies the flexural wave-
length. The west face of East Ridge dips 20� . Assuming this outward-facing slope is due to the flexural rota-
tion of an originally subhorizontal section of the rift valley floor, this implies 20� of outward rotation which
for a 2.5 km offset indicates a Te 5 0.5–1 km [Smith et al., 2008, Figure 6]. This value of Te is similar to the val-
ues found at the 13�N detachment faults [Smith et al., 2008] and several central North Atlantic detachment
faults [Schouten et al., 2010].

A clearly identifiable AVR exists along the length of the south segment adjacent to South Core Complex,
East Ridge, and West Ridge. The AVR is several hundred meters high and a few kilometers wide, consistent
with the sizes of AVRs described at other sections of the MAR [e.g., Searle et al., 2010; Smith and Cann,
1993]. Because modeling suggests that detachment faults form primarily when the fraction of plate separa-
tion (M) taken up by magma accretion is between �0.3 and 0.5 [Buck et al., 2005; Olive et al., 2010; Tucholke
et al., 2008], we infer that M is at the high end of this range in areas with detachment morphology and
robust AVRs. An M of 0.5 would imply that 50% of the extension is taken up by detachment faulting and
50% by magmatic accretion (which includes minor faulting).

No AVR is present in Area 2 where water depths average �4500 m (compared to �3400 m adjacent to
South Core Complex). We interpret Area 2 as having lower magma supply and an M << 0.5. It is impossible
to have a better estimate of M, but since only short-offset normal faults have formed in Area 2 for the last
�0.3 Ma, the true relationship between magma supply and faulting style probably is not simple.

The distances of fault terminations from the volcanic axis vary along the axis in our study area. At South
Core Complex, the location of the fault termination is not known precisely, but the data suggest it is
�6.5 km from the volcanic axis. At West Ridge (Sentry Box 181), which has slipped for a similar length of
time as South Core Complex, the termination is �4.5 km from the volcanic axis. The location of a fault termi-
nation may be controlled by the amount of volcanic infill covering a sloping detachment surface. Thus,
because of the large volume of infill adjacent to South Core Complex, lavas cover more of the detachment
surface and its termination is far from the volcanic axis while at West Ridge where the volume of volcanic
infill is not as large, the termination is closer to the axis. Note that in Area 1 where volcanic infill is large, the
valley floor lavas near to the termination are significantly faulted and fissured. The low angle of the emerg-
ing detachment footwall (6�) in this region may enhance deformation of the thin wedge of hanging wall
lavas covering it, leading to the more intense faulting and fissuring observed in this area.

8.3. Evolution of Detachment Surfaces
Except at South Core Complex, we observe significant mass wasting of detachment surfaces as they move off
axis. Where mass wasting is substantial, spurs have formed between large semicircular headwall scars (see Box
183, Figure 11). The spurs are elongate in a direction close to the slip direction, and large enough to be seen in
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the regional bathymetry.
Their formation may be
controlled by preexisting
large-scale corrugations that
have the same wavelength
of a few kilometers.

Outward-facing scarps with
relief of <15 m are seen on
the Sentry bathymetry data
collected over the corru-
gated surfaces of South
Core Complex and West
Ridge detachment. The ori-
gin of these faults is
unknown, but a possibility is
that they form as the
detachment surface flexes
and rotates outward to near
horizontal. Another possibil-
ity is that they form from
spalling or flaking of the
fault surface once it is
exhumed [e.g., Petit, 1987].

8.4. Controls on the
Formation of
Corrugations
Corrugations have been
observed at many scales,
from megamullions (wave-
length of�10 km and ampli-
tude of�500 m) [Tucholke
et al., 1998] through corruga-
tions (�1 km,�50–100 m)
to small-scale features such
as the corrugations
described on South Core

Complex and West Ridge from the Sentry data (�10–100 m,�5 m) and centimeter-scale striations [e.g., Karson,
1999]. On most detachment surfaces, corrugations coexist on a wide range of scales [Blackman et al., 2002;
MacLeod et al., 2002, 2009; Mallows and Searle, 2012], superimposed one on the other. How do corrugations form?

Tucholke et al. [2008] suggested that at mid-ocean ridges with low melt supply the uneven distribution of
magmatic intrusions beneath the ridge axis creates an irregular brittle-ductile transition. As a detachment
extends in such a region, the footwall takes on the shape of the base of the brittle layer exhuming large-scale
megamullions. This is analogous to the geologic continuous casting model of Spencer [1999]. We do not think,
however, that the irregularity in magma distribution at the axis could offer a mechanism for the formation of
all corrugations. It is possible that some corrugations, especially those observed above the brittle/ductile tran-
sition close to the fault breakaway at West Ridge and South Core Complex, may be formed from segmented
fault traces that break through and connect (anastomosing faults) [Ferrill et al., 1999; Wong and Gans, 2008].
Such corrugations continue to be formed as the detachment slips. Of note is that in both areas the corruga-
tions close to the breakaway appear to be continuous with the corrugations close to the termination.

8.5. Faulting at 16.5�N
In the 16.5�N region, lineations that parallel the slip direction and are continuous for up to 10 km are
observed on the western flank of the axis. We interpret these lineations as large-scale corrugations formed
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during slip on long-lived detachment faults. The lineations indicate that detachment faulting has domi-
nated parts of the western flank of the 16.5�N region for perhaps as long as 5 Ma (Figure 2), assuming sym-
metrical spreading. Nearer to the axis, we extend our findings from the Sentry surveys and our
interpretation of subsurface faulting to identify the key tectonic features.

Figure 14 summarizes our findings. The breakaways of South Core Complex, West Ridge and the Area 2 massif
are 12–15 km from the current axis, suggesting that they were all active at the same time (�0.7–0.9 Ma assuming
they initiated 3.5 km from the volcanic axis and a half-spreading rate of 12.5 km). These features may have linked
together to form a single detachment along�50 km of the axis. Detachment faulting stopped in Area 2, with
the initiation of a sequence of short-lived faults. The breakaway of the earliest short-lived fault is�7.5 km from
the axis suggesting that it formed�0.3 Ma. Farther south the 10 km long East Ridge fault formed at�0.2 Ma
(given its 2.5 km offset), and interrupted the slip on the detachment surface behind it. From the data in hand, we
cannot determine whether East Ridge is a rafted block or a new fault that formed after a period of two-sided
magmatic spreading (Figure 13). The curved shape of the north and south tips of East Ridge, however, suggests
that it could be breaking through to connect to what might be a single segment-long detachment surface.

There are presently no active detachment faults on the eastern side of the ridge axis along the south and
north segments. The SeaBeam bathymetry data show, however, that detachment fault morphologies are
present over a large portion of the eastern flank on crust> 2 Ma (Figure 2). The presence of these features
on off-axis seafloor east of the axis, in combination with the detachment morphologies that are observed
west of West Ridge, implies that within the last 5 Ma both sides of the axis have experienced detachment
faulting perhaps even simultaneously.

9. Conclusions

Detachment faulting has dominated parts of the western flank of the 16.5�N region for perhaps as long as 5
Ma. Active detachment faulting currently is limited to the western side of the axis. Nonetheless, detachment
fault morphologies also are present over a large portion of the eastern flank on crust >�2 Ma indicating
that within the last 5 Ma parts of the ridge axis may have experienced periods of two-sided detachment
faulting.

The study area exhibits a variety of morphologies indicative of detachment faulting including a classic cor-
rugated massif, noncorrugated massifs, and back-tilted narrow ridges marking detachment fault break-
aways. We also recognize a new morphology: a low-angle (10�–20�), irregular surface in the regional
bathymetry is shown to be a corrugated detachment surface. These corrugations have wavelengths of only
tens of meters and amplitudes of a few meters and are only visible in the high-resolution Sentry
bathymetry.

Multiscale corrugations extend from the termination of detachment fault surfaces to only a few kilometers
from the fault breakaway. The presence of corrugations that close to the breakaway of the detachment
faults suggests that some corrugations form above the brittle/ductile transition perhaps by anastomosing
faults.

A robust AVR, several hundred meters high and a few kilometers wide, exists along the 40 km length of the
south segment adjacent to active detachments faults. We infer that M 5 0.5 in this segment (the fraction of
plate separation accommodated by magma accretion) [Buck et al., 2005; Olive et al., 2010; Tucholke et al.,
2008]. In the north segment where water depths reach �4500 m and no AVR is present, we conclude that
magma supply is lower and thus M << 0.5. Currently, active detachment faulting does not appear to occur
in the north segment. These observations add to the growing evidence that detachment faulting is likely
dependent on a balance between several factors including magma input.
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