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Abstract

The exploration of microbial communities by sequencing 16S rRNA genes has expanded with low-cost, high-throughput
sequencing instruments. Illumina-based 16S rRNA gene sequencing has recently gained popularity over 454
pyrosequencing due to its lower costs, higher accuracy and greater throughput. Although recent reports suggest that
Illumina and 454 pyrosequencing provide similar beta diversity measures, it remains to be demonstrated that pre-existing
454 pyrosequencing workflows can transfer directly from 454 to Illumina MiSeq sequencing by simply changing the
sequencing adapters of the primers. In this study, we modified 454 pyrosequencing primers targeting the V4-V5 hyper-
variable regions of the 16S rRNA gene to be compatible with Illumina sequencers. Microbial communities from cows,
humans, leeches, mice, sewage, and termites and a mock community were analyzed by 454 and MiSeq sequencing of the
V4-V5 region and MiSeq sequencing of the V4 region. Our analysis revealed that reference-based OTU clustering alone
introduced biases compared to de novo clustering, preventing certain taxa from being observed in some samples. Based on
this we devised and recommend an analysis pipeline that includes read merging, contaminant filtering, and reference-based
clustering followed by de novo OTU clustering, which produces diversity measures consistent with de novo OTU clustering
analysis. Low levels of dataset contamination with Illumina sequencing were discovered that could affect analyses that
require highly sensitive approaches. While moving to Illumina-based sequencing platforms promises to provide deeper
insights into the breadth and function of microbial diversity, our results show that care must be taken to ensure that
sequencing and processing artifacts do not obscure true microbial diversity.
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Introduction

The field of microbial ecology relies on knowledge about the

structure and composition of microbial communities as a

foundation for understanding their role and function. Culture-

independent analyses, which allow the identification of species that

are recalcitrant to cultivation, continue to have a large impact on

our understanding of microbial communities since the first studies

of 5S rRNA sequences by Stahl et al. in the mid 1980s [1,2]. While

many consider full length sequences generated by Sanger

sequencing of 16S rRNA clone libraries to be the gold standard

for phylogenetic analysis, even the largest studies typically

analyzed no more than a few hundred to a thousand sequences

for each sample due to the costly and labor intensive process this

method entails [3–5]. In the early 2000s, the development and

commercial availability of high-throughput sequencing platforms

capable of producing hundreds of thousands to millions of

sequences per run at a significantly lower cost than Sanger

sequencing led to a revolution in the field of microbial ecology.

Microbial ecologists quickly adopted high-throughput pyrose-

quencing instruments produced by Roche 454 Life Sciences for

sequencing 16S rRNA genes, which led to the discovery of what

has been termed the ‘‘rare biosphere’’ and provided a deeper and

more thorough view of the composition of a vast number of

microbial communities from a wide range of habitats [6–10].

Since its introduction, most investigators have preferred 454

pyrosequencing for microbial diversity projects due to the longer

read lengths that the 454 pyrosequencing platform provided

relative to competing sequencing instruments from Illumina and

others. While capable of producing longer reads lengths than

competing technologies, 454 pyrosequencing produces datasets

that exhibit characteristic errors associated with insertions/

deletions (indels) in stretches of identical nucleotides (homopoly-

mers) [11]. These systematic errors must be removed or corrected

using time consuming and computationally intensive software

packages prior to further analysis [12–14].

Compared to 454 pyrosequencing, the Illumina sequencing-by-

synthesis (SBS) methodology has a lower per-base error rate and is

not as susceptible to indel errors in homopolymer stretches

[15,16]. The significantly higher sequence quality of Illumina

generated sequences, combined with a much lower cost per

sequence compared to 454 pyrosequencing, has spurred a number

of researchers to develop strategies to sequence 16S rRNA gene

amplicons using Illumina systems [17–22]. Although initial studies

suggested that Illumina-based 16S sequencing produced data of

lower quality than 454 pyrosequencing [19], adjustments to the
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library preparation and sequencing protocols have produced

datasets with significantly higher quality than 454 pyrosequencing

[18,22]. While Illumina instruments historically generated short

sequences of 30–100 bp, increases in the maximum read length on

the Illumina MiSeq platform [26300 bp paired end sequencing as

of this writing) allow the sequencing of amplicons of similar length

to those traditionally used in 454 pyrosequencing studies.

Additionally, the length and quality of Illumina sequenced

amplicons can be increased by aligning and combining each set

of paired end reads into a single contig, a process generally

referred to as read merging. This allows researchers using the

Illumina MiSeq to produce merged sequences with an average

length similar to those generated by 454 pyrosequencing but of

significantly higher quality and at a lower cost per sequence

[17,22,23].

While some previous studies have compared the results of 454

pyrosequencing and Illumina sequencing for both metagenomic

libraries and 16S amplicons [24–26], these studies mostly focused

on comparing beta diversity measures to see if the two sequencing

technologies produced similar comparisons between different

samples. As such, finer details concerning whether Illumina-based

16S sequencing can serve as a replacement for users currently

using 454 pyrosequencing have yet to be fully explored. In this

study we generated amplicon libraries of the V4-V5 hyper-variable

regions of the 16S rRNA gene for 6 natural microbial

communities and a synthetic mock community using the same

16S rRNA gene template primers, which were sequenced using

either a 454 GS FLX or Illumina MiSeq. Additionally, libraries for

the V4 hyper-variable region alone were generated and sequenced

on the MiSeq using the protocol described by Caporaso et al. [18]

We examined multiple combinations of data processing methods

involving OTU clustering and chimera detection to identify a

combination that provides both processing efficiency and accura-

cy. Using this processing method we analyzed the resulting

datasets and compared the results of alpha and beta diversity

analyses to evaluate whether the choice of sequencing platform led

to significant differences that could bias the interpretation of the

results.

Materials and Methods

Sample descriptions
We chose five samples, representing diverse host-associated

microbial communities, for analysis: stool from an adult human

(sample Human), contents of the intestinum of the medicinal leech

Hirudo verbana (sample Leech), contents from the small intestine of a

healthy mouse (sample Mouse), the non-adherent microbial

fraction obtained from rumen contents of a dairy cow (sample

Rumen) and the hindgut contents from the eastern subterranean

termite Reticulitermes flavipes (sample Termite). Mixed liquor from

the municipal waste water treatment facility located on the

University of Connecticut, Storrs campus (sample Sewage) was

included as a complex, high-diversity environmental microbial

community. We also included a synthetic mock community

(sample Mock) which was developed by the Human Microbiome

Project (HMP) and includes the following 20 bacterial species in

equal concentration according to ribosomal copy number:

Acinetobacter baumannii str. 5377, Actinomyces odontolyticus str. 1A.21,

Bacillus cereus str. NRS 248, Bacteroides vulgatus str. NCTC 11154,

Clostridium beijerinckii str. NCIMB 8052, Deinococcus radiodurans str.

R1 (smooth), Enterococcus faecalis str. OG1RF, Escherichia coli str.

K12 substr. MG1655, Helicobacter pylori str. 26695, Lactobacillus

gasseri str. 63 AM, Listeria monocytogenes str. EGDe, Neisseria

meningitidis str. MC58, Propionibacterium acnes str. KPA171202,

Pseudomonas aeruginosa str. PAO1-LAC, Rhodobacter sphaeroides str.

ATH 2.4.1, Staphylococcus aureus TCH1516, Staphylococcus epidermidis

FDA str. PCI 1200, Streptococcus agalactiae str. 2603 V/R,

Streptococcus mutans str. UA159, and Streptococcus pneumoniae str.

TIGR4. For the 454 library, an earlier version of the HMP mock

community was used that comprised the same 20 species plus

Porphyromonas gingivalis str. 2561. The RBB+C protocol described

by Yu and Morrison [27] was used to isolate high quality genomic

DNA from all samples except the human stool and mock

community. The mock community DNA was obtained from BEI

Resources (catalog number HM-276D, Genomic DNA from

Microbial Mock Community B, even concentration).

Vincent Young (University of Michigan) generously provided

the human stool DNA from an anonymous female donor. The

University of Connecticut (UConn) IRB committee determined

that our research did not require IRB approval for our use of this

sample as it was previously collected under an IRB approved

protocol and the donor gave consent for its use in subsequent

studies such as ours. The rumen and mouse samples were collected

as part of IACUC approved studies being conducted at the

University of Connecticut that are not a part of this current study.

The UConn IACUC committee determined that this study did not

require separate approval for the use of these samples as they were

collected under approved protocols as part of ongoing research

programs and not at the specific request of the authors. Leeches

were purchased from Leeches USA, an approved supplier of

medicinal leeches and termites were purchased from CT Valley

Biological Supply. No specific permits or permissions were

required for the acquisition of the sewage sample.

Library preparation
We used primers previously designed to amplify the V4-V5

hyper-variable regions of the 16S rRNA gene to generate the 454

and Illumina libraries using fusion primer designs appropriate for

the respective sequencing platforms (Table 1) [28]. The 16S

template binding sequence was identical between both sets of

fusion primers, with the 454 fusion primers following the standard

format used by the Marine Biological Laboratory (MBL) and the

Illumina fusion primers using the format described by Bartram et

al. [17]. Libraries for all seven samples were prepared and

sequenced by 454 pyrosequencing at the MBL’s Josephine Bay

Paul Center according to their standard protocols on a GS FLX

using Titanium sequencing chemistry [28].

The Illumina sequencing libraries were all prepared and

sequenced at the University of Connecticut. We prepared two

sets of V4-V5 Illumina libraries for the six natural community

samples at two separate times. The first set of libraries was

prepared following the same protocol used for the 454 pyrose-

quencing libraries, with the PCR product for each sample gel

purified prior to pooling and sequencing. The PCR products for

the second set of V4-V5 Illumina libraries and the mock

community libraries were purified using a 0.6X PCR volume of

AMPure XP magnetic beads following the manufacturer’s

instructions. Additionally, we prepared libraries for the V4

hyper-variable region according to the protocol described by

Caporaso et al. [18]. The Illumina libraries were sequenced on

separate runs of a MiSeq using a 26250 bp paired end protocol.

Sequence pre-processing
The V4-V5 454 pyrosequencing datasets were pre-processed

prior to QIIME analysis in accordance with the in-house

processing pipeline used by the MBL for 454 pyrosequencing

analysis. Sequences had to possess the full index and forward

primer sequence with no errors present in either, have zero
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ambiguous bases over the entire length of the read, and be longer

than 300 bp after trimming of the index and forward primer

sequences in order to be retained after demultiplexing with

QIIME [29]. After demultiplexing, the 454 sequences were

denoised using the QIIME Denoiser according to the QIIME

standard protocol. The V4-V5 Illumina datasets were initially

demultiplexed using MiSeq Reporter v2.0. The sequences

corresponding to the forward and reverse primers were trimmed

from the demultiplexed reads using cutadapt (http://code.google.

com/p/cutadapt/) using similar stringency settings to those used

for the 454 sequences. The trimmed read pairs were then merged

into single contigs using SeqPrep (https://github.com/jstjohn/

SeqPrep) followed by a length-filtering step prior to analysis with

QIIME. The Illumina V4 read pairs were merged and length

filtered in a similar manner as the V4-V5 reads to form single

contigs prior to being demultiplexed with QIIME. Reads from all

datasets were quality filtered using a Q20 minimum value during

demultiplexing. In order to ensure an even treatment and

comparison of all sequence datasets for the seven sample sources,

the demultiplexed sequences for all datasets were combined and

processed as a single bulk dataset for QIIME analyses.

QIIME analysis
We used QIIME versions 1.6 and 1.7 to perform OTU

clustering and alpha and beta diversity analyses [29]. Reference-

based OTU clustering was done using the parallel uclust_ref

method while de novo OTU clustering was done with standard

uclust, using the default options as implemented in QIIME for

both methods at the 97% similarity level. For reference OTU

clustering and de novo OTU alignment we used the V4-V5 section

of the 97% clustered Greengenes reference OTU NAST

alignment [30,31]. The 2012–10 Greengenes database release

was used initially as this was the current version when analysis

began. After the 2013–08 release became available, all processing

was re-run with the new release, allowing us to examine the effect

of the reference itself on data analysis and interpretation.

Taxonomy assignments were made using the RDP Classifier after

retraining against the above mentioned Greengenes reference

sequences and their respective taxonomy files as recommended by

Werner et al [32]. Chimera checking was performed using

ChimeraSlayer with standard options as implemented in QIIME

against the V4-V5 region of the Greengenes reference alignment.

A more detailed description of our creation of the V4-V5

specific Greengenes reference files and the different QIIME

processing methods used is provided in the supplementary

methods (File S1). The scripts (denovo.sh, Ref.sh, RDS.sh) used

for QIIME analysis are also included the supplementary material

(File S2).

Data availability
The sequence data generated and used in this study were

deposited in the European Nucleotide Archive SRA under project

ID PRJEB4688.

Results

We conducted a comparison of 454 pyrosequencing and

Illumina sequencing of 16S amplicons by analyzing four different

sequencing libraries for six different natural microbial community

samples: the V4 hyper-variable region sequenced on an Illumina

MiSeq (V4.I), a V4-V5 Illumina library that was gel-purified

(V4V5.Ia), a second V4-V5 Illumina library that was AMPure

purified (V4V5.Ib), and a V4-V5 454 pyrosequencing library

(V4V5.454). We also analyzed one V4-V5 454 library and two

replicate V4 and V4-V5 Illumina libraries for a synthetic mock

community. As one of the stated advantages of Illumina

sequencing is a lower error rate compared to 454 pyrosequencing

[15,16], we first compared the overall quality of the sequences

generated from each sequencing run. While these values represent

predicted rather than absolute error rates, they are the most

commonly used proxy for examining sequence quality and thus

one of the primary metrics used in data pre-processing. The

Table 1. Library construction primer sequences.

Sequencing
Instrument

16S Variable
Region(s) Name Primer Sequence 5’-3’A Length

Roche 454 V4-V5 454-518F GCCTCCCTCGCGCCATCAGXXXXXCCAGCAGCYGCGGTAAN 41

GS FLX 454-926R-1 GCCTTGCCAGCCCGCTCAGCCGTCAATTCNTTTRAGT 37

454-926R-3 GCCTTGCCAGCCCGCTCAGCCGTCAATTTCTTTGAGT 37

454-926R-4 GCCTTGCCAGCCCGCTCAGCCGTCTATTCCTTTGANT 37

Illumina Iv4v5-518F CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
CCAGCAGCYGCGGTAAN

81

MiSeq Iv4v5-926R-1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN
CCGTCAATTCNTTTRAGT

80

Iv4v5-926R-3 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN
CCGTCAATTTCTTTGAGT

80

Iv4v5-926R-4 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN
CCGTCTATTCCTTTGANT

80

V4 Iv4-515f AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMGCCGCGGTAA 60

Iv4-806r CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXXXAGTCAGTCAGCCGGACTACHVGGG
TWTCTAAT

68

AFor all primers sets, the 16S template specific sequences are given in bold. For the 454 primers, the Xs in the forward represent the 5 bp run-key defined by the MBL
with the underlined portion representing the 454 Lib A (forward primer) or Lib B (reverse primers) adapter sequence. Underlined portions of the Illumina primers
represent the full TruSeq adapter sequence (V4-V5 primers) or a truncated version (V4). The N-bases in italics for the V4-V5 primers represent the 4 base ambiguous mix
in between the TruSeq adapter sequence and the 16S template sequence. The Xs in the V4-V5 forward primer represent the sequence of one of the 6 bp TruSeq indices
defined by Illumina while in the V4 forward primer they represent the 12 base Golay encoding barcode as defined by Caporaso et al.
doi:10.1371/journal.pone.0094249.t001
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median PHRED quality score (Q-score) for each base over the

length of a read had an average value of Q39 in the V4V5.454

datasets (Figure 1) and represented the standard to which the

Illumina datasets were compared. As the error rate of Illumina

sequences increases at the 39 ends of each read, as indicated by a

drop in Q-scores, we merged the paired Illumina reads to form a

single consensus contig prior to quality and QIIME analysis. This

process serves to minimize the effects of sequencing errors by

forming a consensus sequence from the overlapping ends of the

reads as previously demonstrated [22]. The median Q-score for

each base of the consensus contig after read merging was similar to

or greater than that of the 454 dataset (Figure 1), demonstrating

that by merging the paired Illumina sequencing reads we could

produce single contigs of similar length as 454 pyrosequencing but

of higher average quality. Additionally, improvements to Illumi-

na’s Real Time Analysis (RTA) base-calling software that occurred

during this study have resulted in significantly higher Q-scores for

bases later in a read, which correspond to greater confidence in

base-calling. This improvement can be seen in the reads from the

V4V5.Ib dataset, which have higher median Q-scores for bases in

the overlap region than the V4V5.Ia dataset, which was sequenced

using an earlier version of the RTA software (Figure 1). Additional

improvements from Illumina regarding MiSeq read lengths and

on-instrument data analysis now suggest that merging paired reads

from longer amplicons, such as those covering the V1-V3 regions

are now feasible. Overall, after read merging a greater proportion

of reads from the Illumina sequencing runs was retained after

demultiplexing compared to the V4V5.454 data when using the

same quality threshold of Q20 (data not shown).

Low-levels of dataset contamination occur in Illumina
sequencing

While we observed that overall read quality was higher in the

Illumina datasets compared to the 454 pyrosequencing dataset,

during our analyses we identified a small percentage of reads in the

Illumina datasets that did not belong in the demultiplexed dataset

for a given sample, a result that we did not observe in any of the

454 datasets. The source of these reads could be assigned to two

separate issues that are particular to Illumina sequencing systems

and especially for the MiSeq. The first source of these incorrect

reads was the carry-over of samples from a previous sequencing

run into the subsequent sequencing run. This occurs when samples

from a previous run persist in the fluidics lines of the system and

become mixed with new samples in subsequent sequencing runs

[33]. If identical indices are used in consecutive sequencing runs,

then the carry-over of reads from a previous library can artificially

suggest the presence of low abundance OTUs that are not truly

present in a subsequent sample.

The second source of incorrect reads that we identified was

from other libraries that were sequenced during the same

sequencing run. This was most noticeable for the V4V5.Ib

datasets, which we sequenced at the same time as amplicon

libraries created for non-ribosomal genes. Both the 16S V4V5.Ib

and non-ribosomal libraries featured different six base TruSeq

indices and we determined that ,0.06% of reads in the 16S

libraries were sequences from the non-ribosomal amplicon

libraries. This was the first time that the non-ribosomal libraries

were sequenced, thus the contamination could not have been due

to carry-over contamination of the fluidics lines from a previous

run as noted above. In addition, the 16S and non-ribosomal

libraries were prepared completely independently of each other

and were only pooled immediately before loading into the MiSeq,

eliminating the chances of contamination during library prepara-

tion. After consultation with Illumina representatives, we assume

that this result is due to sequencing and/or image analysis errors

during the index sequencing phase of the MiSeq run, which occurs

as a separate step in the sequencing process, and likely caused a

small number of amplicons from one library to be incorrectly

Figure 1. Comparison of 454 and Illumina sequence quality. Plot depicting the median per base PHRED quality scores (Q score) for the full
length 454 and merged Illumina reads from the six natural community samples. The V4 data is shown in orange, the first V4-V5 Illumina run (V4V5.Ia)
is in light green, the second run (V4V5.Ib) is in dark green, and the 454 data is in blue. The size and over-lapping regions of the V4 and V4-V5 Illumina
amplicons is shown in black below the quality plots. Illumina sequencing read 1 is depicted as a solid line while read 2 is dashed, with arrow heads
depicting the direction of the read in reference to the E. coli base position given along the X axis.
doi:10.1371/journal.pone.0094249.g001
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assigned an index corresponding to another library. While we

could adequately identify the contaminating non-ribosomal

sequences and remove them from our 16S datasets before

proceeding with downstream analyses, this finding suggests that

a similar level of index misassignment could occur between

different 16S libraries when sequenced on the same run, which will

artificially inflate alpha diversity measures and bias the interpre-

tation of results when investigating low abundance OTUs.

In addition to index misassignment and/or sample carryover of

similarly indexed libraries, we also identified reads from the

WX174 (phiX) genome in all of the raw Illumina datasets. These

reads originated from the unindexed phiX control library that is

added to Illumina sequencing runs as an inline control library and

could not have resulted from contamination during library

construction. Formerly, the sequencing of 16S amplicons on the

MiSeq required phiX to comprise 50–90% of the run’s

throughput, as was done when we sequenced the V4.I and

V4V5.Ia libraries. Upgrades to the MiSeq’s RTA base-calling

software (since version 2.2) have reduced the amount of phiX that

is recommended to be added to amplicon sequencing runs to only

2–5%, however phiX reads were still observed in the raw V4V5.Ib

datasets which we sequenced with the upgraded RTA software

and only 2.5% phiX. In order to prevent the presence of phiX

reads in the Illumina datasets from biasing our downstream

analyses, we incorporated a step in our Illumina pre-processing

pipelines to identify and remove these reads prior to analysis with

QIIME.

Determining optimal OTU clustering method
As Illumina sequencing with the MiSeq generally produces at

least 10 times more sequences than 454 pyrosequencing, recent

publications discussing Illumina 16S amplicon sequencing have

used and recommended reference-based OTU clustering methods

to enable users to quickly process their data [18]. While reference

OTU clustering has been used for the analysis of 454 data, many

investigators still choose de novo OTU clustering methods for 454

data analysis as this method recovers OTUs not found in reference

datasets. Thus we examined what effect these two clustering

methods had on data analysis and the interpretation of the results.

We performed de novo OTU clustering of the bulk dataset using

standard QIIME methods for processing pyrosequencing data

with uclust used for OTU clustering and chimera checking

performed with ChimeraSlayer, while reference OTU clustering

was performed with the parallel version of uclust_ref against the

Greengenes 2012–10 reference as that was the current Greengenes

release at the time. These two clustering methods yielded very

different results, with the number of OTUs observed and the

number of sequences assigned to an OTU being lower when

performing reference-based clustering than de novo clustering for

the same dataset (Table S1, Figure 2a).

One of the factors that contributed to the difference between the

two clustering methods was that a large number of sequences

failed to be assigned to a reference OTU (Table S1). On average,

only 65% of the reads for a given dataset were assigned to a

reference OTU, although the scale of this effect varied dramat-

ically between the different samples. For example, over 90% of

reads from each of the human stool datasets were assigned to a

reference OTU, while for the termite sample only between 30% to

40% of reads from the V4-V5 datasets were assigned to a

reference OTU (Table S1). As the Greengenes 2013 release

occurred as we were performing our data analyses, we repeated

the reference OTU clustering using this newer reference as the

2013 release includes a greater number of reference sequences

than the 2012 release. When using the Greengenes 2013 release

for reference OTU clustering, we observed that a greater number

of sequences were assigned to a reference OTU and a greater

number of OTUs per sample observed compared to using the

2012 version. Even with this improvement over the 2012

reference, we still did not observe the same number of OTUs as

in the de novo clustered datasets (Table S1, Figure 2a). This

difference in the number of OTUs based on reference or de novo

OTU clustering carried over into the calculation of alpha diversity

measures, although beta diversity analyses, particularly those using

the phylogenetic tree based weighted UniFrac metric were less

affected (data not shown).

Reference plus de novo OTU clustering with chimera
checking

In order to more closely replicate the results of de novo OTU

clustering while retaining the processing efficiency of reference

OTU clustering, we developed an analysis pipeline that first

performs parallel reference OTU clustering using the 97%

Greengenes OTUs as reference, followed by de novo OTU

clustering and chimera checking with ChimeraSlayer of the

sequences that failed to be assigned to a reference OTU. As

discussed below, this reference plus de novo OTU clustering with

ChimeraSlayer pipeline, which we call RDS, produced similar

alpha diversity measures, taxonomic composition, and beta

diversity comparison as the chimera checked de novo OTU

clustering method. Unlike the similar open reference clustering

method of uclust_ref implemented in QIIME, which can only run

on a single processing core, this split implementation takes

advantage of the ability to perform reference OTU clustering

across multiple processing cores, reducing the total time for

analysis and thus is more amenable to processing large Illumina

datasets.

We compared the number of observed OTUs and the Simpson

(D), Shannon (H9) and phylogenetic distance (PD) alpha diversity

metrics generated by the RDS method using each of the

Greengenes references to those obtained using de novo and

reference OTU clustering. Using either Greengenes reference,

the number of OTUs generated using the RDS method was more

similar to the number of OTUs obtained by de novo clustering than

for reference OTU clustering alone (Table 2, Figure 2). While the

magnitude of the difference in the number of OTUs between

processing methods varied for each dataset, on average the results

of reference-based processing were 23.7% different from de novo

while RDS processing was 12% different. When analyzed by

ANOVA, the number of reference-clustered OTUs was signifi-

cantly different from the results of de novo OTU clustering (p,0.01)

but there was no statistical difference between the RDS method

and de novo (p.0.05). Compared to de novo OTU clustering, the

alpha diversity measures generated using the RDS clustering

method had Pearson correlation coefficients closer to 1 and greater

linear curve fits than the reference-clustered measures, indicating

that the RDS method reproduces the results of de novo OTU

clustering better than reference-based OTU clustering alone.

Even though the RDS processing method reproduced the

results of de novo OTU clustering better than reference-based OTU

clustering according to the alpha and beta diversity measurements

we examined, there were a greater number of OTUs in nearly all

of the Illumina datasets than has been reported for similar samples

in the literature. In particular, the Illumina datasets of the mock

community had between 25 to 125 times as many OTUs as

expected based on an analysis of the available reference genome

sequences. One factor contributing to this increase could be the

above mentioned dataset contamination, which can be partially

addressed using OTU filtering strategies to remove OTUs that

Testing Congruence of 454 and Illumina 16S Surveys

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94249



account for a low percentage of the total reads as recommended

for Illumina datasets by Bokulich et al. [34] An analysis of different

filtering methods and cutoffs showed that no single filtering value

worked equally well across all samples, as cutoffs that reduced the

number of OTUs in the mock community samples to reasonable

numbers were overly restrictive for other samples (Table S2).

Manual examination of the representative OTU sequences from

the Illumina mock community datasets showed that a large

proportion of them represented chimeras between two or more

species from the community. Because the highly synthetic nature

of the mock community is not very representative of the richness

and evenness of natural samples, we chose to remove single and

doubleton OTUs from the full OTU table as spurious reads,

followed by filtering of OTUs representing fewer than 0.005% of

all sequences as was recommended by Bokulich et al. [34] While

the number of OTUs observed with reference clustering against

the Greengenes 2013 reference was more similar to de novo after

implementing the OTU filtering step, linear regression analysis

showed that the RDS method still produced results more reflective

of de novo OTU clustering (Figure 2b).

After processing the datasets using the RDS method and

incorporating the OTU filtering step, the alpha diversity metrics

for each of the Illumina datasets had more OTUs and a larger

phylogenetic distance (PD) than the corresponding 454 dataset

(Table 2). We observed a similar result when performing de novo

OTU clustering of the datasets with the OTU filtering step.

Except for one of the mock community datasets, all of the Illumina

datasets for a sample had a greater number of input sequences

than the corresponding 454 dataset. To prevent differences in

sequencing depth from biasing our comparisons of 454 and

Illumina sequencing, we normalized the number of sequences in

the datasets for a sample by rarefying each dataset to the number

of reads in the corresponding 454 dataset. The smallest mock

community Illumina dataset was excluded from this analysis. After

rarefication, the number of OTUs observed in the Illumina

datasets was still greater than in the corresponding 454 dataset

(Table 3) although the degree of difference was smaller for the

higher diversity samples (rumen, sewage, termite) than the low

diversity samples (human stool, leech, mouse).

When we compared the number of OTUs between the V4 and

V4-V5 Illumina datasets of each sample, the V4 dataset

consistently had fewer OTUs than for the corresponding V4-V5

Illumina datasets. Compared to the V4-V5 amplicons, the V4

amplicons are ,100bp shorter and cover only a single hyper-

variable region. The greater number of OTUs for the Illumina

V4-V5 datasets compared to the V4 after rarefaction suggests that

the increased sequence information available for analysis by

including the V5 hyper-variable region allowed for the discrim-

ination of new OTUs that could not be differentiated based on the

V4 region alone.

Beta diversity analysis
Beta diversity analysis of all datasets showed that each sample

source represented a distinct microbiome irrespective of the

processing method used. Each of the individual datasets clustered

together on the basis of their original sample source as determined

by principal coordinates analysis of the Bray-Curtis and UniFrac

distances between each dataset (Figure 3). This clustering was

independent of the hyper-variable regions chosen for sequencing,

V4 or V4-V5, or the sequencing platform used, GS FLX or

Figure 2. The RDS processing method replicates de novo OTU clustering better than reference-based clustering. The correlation
between OTU clustering methods is shown by plotting the number of raw (a) and filtered (b) OTUs observed when using de novo OTU clustering
versus reference or the RDS method. The reference-based OTU clustering results are depicted with squares while the RDS OTU clustering results are
depicted with circles. Open markers indicate samples where the Greengenes 2012 reference was used while closed markers indicate samples where
the Greengenes 2013 reference was used. De novo results are depicted as gray diamonds. Linear regression lines are shown for the reference and RDS
datasets, with dash lines fitted to datasets processed using the Greengenes 2012–10 reference and solid lines fitted to datasets processed using the
Greengenes 2013–08 reference.
doi:10.1371/journal.pone.0094249.g002
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MiSeq, indicating that these factors had no obvious effect on the

interpretation of beta diversity analyses when comparing the

diverse group of samples we used in this study. While the RDS

method did not produce beta diversity results identical to those

generated when using de novo OTU clustering, the overall

interpretation of results was similar between the two methods.

The primary difference that we observed was that when using the

Bray-Curtis metric the human, mouse, and mock community

samples were shown to be more similar to each other when the

data was processed using the RDS method compared to using de

novo OTU clustering. This result was similar to what we observed

when performing reference OTU clustering only, and suggests

that these three samples shared a greater percentage of OTUs as a

result of the reference OTU clustering step of the RDS method

than we observed with de novo clustering (Figure S1).

Because of the large overall dissimilarities between the seven

samples as determined by principal coordinate analysis, we also

performed beta diversity analyses of the datasets for each sample

independently. In each case, the V4 Illumina dataset was

consistently more different from the corresponding V4-V5 datasets

than the V4-V5 datasets were from each other, indicating that

choice of hyper-variable region had a greater effect on beta

diversity than the choice of sequencing technology (Figure S2).

Effects of hyper-variable region and OTU clustering
method on observed taxonomic diversity

While alpha and beta diversity measures provide important

insights into the structure and relationship of microbial commu-

nities, a key aspect of generating hypotheses about the functional

and physiological aspects of a microbial community is knowing its

taxonomic composition. We determined the effect of the hyper-

variable region chosen for sequencing and of the OTU clustering

method used for analysis on the taxonomic composition of a

sample by comparing the taxonomy summaries for each dataset

when processed using de novo, reference-based, and the RDS OTU

clustering methods. These comparisons revealed that for some

samples there was a large effect on the observed taxonomic

composition of the choice of hyper-variable regions sequenced or

OTU clustering method used.

Table 3. Alpha diversity measures of RDS processed samples after normalization.

Sample Source Library Normalized SeqsA # OTUs D H’ PD

Human stool H.v4.I 7737 56 0.785 2.999 9.13

H.v4v5.I.a 72 0.793 3.232 8.95

H.v4v5.I.b 72 0.756 3.006 9.23

H.v4v5.454 44 0.773 2.640 8.75

Leech intestinum L.v4.I 10213 26 0.628 2.055 6.21

L.v4v5.I.a 28 0.575 1.767 5.40

L.v4v5.I.b6 38 0.624 2.057 7.65

L.v4v5.I.b11 34 0.613 1.981 6.31

L.v4v5.454 21 0.697 2.255 5.14

HMP Mock Even Mock.v4.I.1 7331 146 0.936 4.606 14.29

Mock.v4.I.105 153 0.941 4.762 14.97

Mock.v4v5.I.11 154 0.959 5.431 15.31

Mock.v4v5.454 39 0.931 4.106 8.07

Mouse small intestine M.v4.I 10350 34 0.650 1.993 6.37

M.v4v5.I.a 46 0.769 2.838 7.14

M.v4v5.I.b 55 0.815 3.196 10.30

M.v4v5.454 30 0.761 2.431 7.21

Rumen content R.v4.I 27672 386 0.987 7.275 55.75

R.v4v5.I.a 420 0.991 7.650 50.96

R.v4v5.I.b 426 0.992 7.751 53.03

R.v4v5.454 310 0.986 7.210 51.04

Municipal sewage S.v4.I 19354 311 0.953 6.253 52.53

S.v4v5.I.a 343 0.973 6.827 57.48

S.v4v5.I.b 349 0.975 6.951 58.00

S.v4v5.454 302 0.979 6.869 58.15

Termite hindgut T.v4.I 6850 127 0.935 4.897 18.68

T.v4v5.I.a 136 0.949 5.338 20.10

T.v4v5.I.b 139 0.916 4.909 19.90

T.v4v5.454 120 0.929 4.945 21.73

AThe normalized number of sequences represents the number of sequences that each dataset of a given sample were normalized to by rarefaction to allow for intra-
sample comparisons of the datasets.
doi:10.1371/journal.pone.0094249.t003
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We tested the three processing pipelines using control DNA

from a synthetic mock community created as part of the Human

Microbiome Project (HMP) to determine if processing method

alone introduced a source of bias [7]. The mock community DNA

used for the Illumina libraries comprised 20 cultured bacterial

species, while the DNA used for the 454 library also included

Porphyromona gingivalis. None of the resulting datasets showed a

taxonomic composition that was identical to the known compo-

sition of the mock community, however each of the three

processing methods (de novo, reference, RDS) yielded a similar

taxonomic composition for each of the three types of libraries

(V4.I, V4V5.I, and V4V5.454, Figure 4).

The abundance of some taxa was affected dramatically by the

type of library that was created and the processing method. In the

V4 Illumina libraries, the genus Propionibacterium was almost

completely absent while in the V4-V5 libraries it represented

,1.5% of the 454 dataset and 2.4–2.9% in the Illumina datasets.

This result was likely due to primer specificity of the V4 primers

compared to the V4-V5 primers, as there is a single base pair

difference between the V4 forward primer and the annealing site

Figure 3. Beta diversity analysis of all datasets. Three dimensional principal coordinates analysis plots showing the relatedness of datasets
using either the Bray-Curtis (A) and weighted UniFrac (B) metric. Individual datasets are represented at spheres which are colored according to their
sample source as follows: human stool – brown, leech intestinum – purple, mouse small intestine – orange, mock community – blue, non-adherent
rumen contents – red, mixed liquor – green, termite hindgut – gold.
doi:10.1371/journal.pone.0094249.g003

Figure 4. Effect of processing method on the taxonomic composition of the mock community datasets. Plot comparing the taxonomic
composition of the mock community sample for the three different library types sequenced when processed three different ways. The replicate V4
and V4-V5 Illumina datasets were combined into one representative dataset for each library type. All taxonomic assignments were made using the
RDP Classifier after retraining with the 2013-08 Greengenes reference. Taxonomic ranks are noted by letters preceding the taxon name as follows:
genus – g, family – f, order – o.
doi:10.1371/journal.pone.0094249.g004
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based on the P. acnes reference genome. Across all three library

types, we consistently observed that the genus Listeria was only

identified when using de novo OTU clustering, whereas the family

Listeriaceae was instead observed when using the reference or RDS

processing methods. Similarly, the genus Escherichia was only

marginally identified in any of the datasets regardless of

processing, with the family Enterobacteriaceae instead being the

predominant taxonomic assignment for these OTUs. It is

interesting to note that this result only occurred when the

Greengenes 2013 release was used for taxonomy assignment, as

OTUs were correctly classified as Escherichia when we used the

2012 version of the reference.

While the taxonomic composition of the mock community

datasets showed little to no specific bias associated with the choice

of hyper-variable regions sequenced or data processing method

used, we did observe some distinct differences in the six natural

microbial community samples that we analyzed. During our initial

analyses using the Greengenes 2012 reference for OTU clustering

and taxonomic assignment we observed that for certain samples

the use of reference clustering alone often missed entire taxa. The

most dramatic example of this was with the V4-V5 libraries for the

termite sample, for which the class Endomicrobia was almost

completely absent from the reference clustered datasets but

comprised nearly 30% of the community when using de novo or

the RDS processing methods (Figure 5). While this issue was

largely resolved with the Greengenes 2013 release, the taxonomic

composition of the RDS processed datasets were more similar to

the de novo OTU clustered datasets than the reference clustered

datasets were. The termite sample was also where differences

between the V4 and V4-V5 libraries were the most apparent.

While the V4-V5 Illumina and 454 libraries were not statistically

different from each other, the V4 library was significantly different

from both V4-V5 libraries (data not shown). In the V4-V5 libraries

the genus Treponema comprised ,45% of the community but

nearly 75% in the V4 library regardless of processing method

(Figure 5). While we could not determine the exact cause of this

discrepancy from the data, it is possible that primer amplification

bias contributed to this result.

In the human stool sample datasets, the abundance of the two

most abundant genera, Bacteroides and Escherichia, differed greatly

between each of the three library types (Figure S2). While the

differences between the V4 and V4-V5 libraries are likely due to

the choice of different primers, the genus Bacteroides was more

abundant in the V4-V5 Illumina libraries compared to the 454

(,65% vs. 55%), while Escherichia was much less abundant (,10%

vs. ,28%). This difference in abundance between the two V4-V5

library types was observed even after normalization of the datasets

by rarefaction, and thus does not directly represent a sampling

depth bias. As noted above for the mock community datasets, the

genus Escherichia was only identified in datasets processed using the

Greengenes 2012 reference for taxonomy assignment, with a single

exception of the V4-V5 Illumina datasets processed using the RDS

method. In this case, the genus Escherichia was observed when using

the 2013 reference but not at the same level as when using the

2012 (Figure S2). We observed similar differences in taxonomic

composition of the sample corresponding to library type for the

other five natural community samples that we analyzed, although

these differences were minor for the rumen and sewage datasets

which had the highest overall taxonomic diversity of the seven

samples we analyzed.

Discussion

Illumina sequencing can faithfully supplant 454
pyrosequencing

The primary goal of this study was to examine how well

Illumina sequencing could serve as a direct replacement for 454

pyrosequencing while using existing 16S sequencing primers and

analysis workflows. To determine this we analyzed six natural

microbial communities and a mock community by using both 454

Figure 5. Effects of processing method and Greengenes database version on the taxonomic composition of the termite datasets.
Plot comparing the taxonomic composition of the termite hindgut sample for the three different library types sequenced when processed using
three different methods. The replicate V4 and V4-V5 Illumina datasets were combined into one representative dataset for each library type.
Taxonomic assignments were made using the RDP Classifier after retraining with either the 2012–10 or 2013–08 Greengenes references. Taxonomic
ranks are noted by letters preceding the taxon name as follows: genus – g, family – f, order – o, class – c, phylum – p, domain – d.
doi:10.1371/journal.pone.0094249.g005
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pyrosequencing and Illumina sequencing of the V4-V5 hyper-

variable region of the 16S rRNA gene. We additionally performed

Illumina sequencing of the V4 region using the protocol developed

by Caporaso et al. [18], which has been adopted as the standard

protocol for Illumina 16S sequencing by researchers participating

in the Earth Microbiome Project. Because the individual reads

generated with the MiSeq are shorter than the single reads

generated by the GS FLX, and previous studies [22] and our own

analysis found that error rates increased towards the 39 end of the

reads, we utilized read merging of the paired Illumina reads to

create single consensus Illumina reads with similar length to those

generated by 454 sequencing. This pre-processing step for the

Illumina datasets yielded merged reads that had a higher average

quality than for the reads generated by 454 pyrosequencing

(Figure 1), along with a greater number of reads per sample

(Table 2).

When analyzing all of the datasets from the samples en masse we

observed small differences in alpha diversity measures between the

pyrosequencing and Illumina datasets for the high diversity

samples while larger differences were observed for low diversity

samples. Conversely, PCoA plots of beta diversity analyses showed

that there was little to no apparent effect of the sequencing method

used (454 or Illumina) or variable regions chosen (V4 or V4-V5),

as each dataset from a given sample clustered together (Figure 3).

Analysis of the individual datasets for each sample, however, did

reveal that the V4 dataset was consistently more different from the

V4-V5 datasets than the V4-V5 datasets were from each other

(Figure S2). Part of this difference stems from the use of primers

that anneal to different regions of the 16S rRNA gene for library

creation, which likely have different amplification biases and

template specificity [35,36]. This bias was apparent in examining

the taxonomic composition of the mock community datasets which

all had slightly different abundances for each taxon across the

three library types we examined and the genus Propionibacterium

nearly absent from the V4 libraries. While we did observe

differences between the V4-V5 454 and V4-V5 Illumina datasets,

these differences did not significantly affect the overall interpre-

tation of beta-diversity analyses, although their effect on

taxonomic composition varied according to sample. On the basis

of our overall findings, we can conclude that researchers who wish

to switch to Illumina sequencing from 454 pyrosequencing should

be able to modify their existing primers by simply replacing the

454 adaptor sequences with Illumina TruSeq adaptor sequences.

An additional option for researchers who do not need or wish to

adapt a pre-established 454 workflow is to use one of the published

V4 sequencing formats developed for Illumina sequencing by

Caporaso et al. or Kozich et al.[18,22] While choosing a different

hyper-variable region for analysis did affect the results in a sample-

dependent manner, our analyses show that overall the V4

amplicons produced similar alpha and beta diversity measures as

the V4-V5 amplicons.

One of the major differences between the Roche 454 GS FLX

and Illumina MiSeq instruments is that the MiSeq is currently

capable of generating well over 10 times as many sequence reads

as the GS FLX in a single sequencing run. Combined with much

lower operating costs, Illumina sequencing on the MiSeq provides

researchers with the opportunity to sequence individual samples to

a greater sampling depth than is feasible with the GS FLX and/or

to include more samples in a single sequencing run through

increased multiplexing of barcoded libraries. As sequencing depth

increases however, a greater number of erroneous sequences can

be incorporated into the resulting dataset, which will artificially

bias estimates of alpha diversity through the generation of spurious

OTUs. These erroneous sequences often arise due to chimera

formation and PCR errors during library preparation, or are the

result of sequencing errors that were not identified and removed

during data processing. Protocols have been developed for 454

pyrosequencing to minimize the presence and effects of illegitimate

sequences/OTUs on diversity analyses, and we incorporated these

protocols as appropriate into our library preparation and data

processing and analysis methods [37–39].

To minimize the effects of sequencing errors we first merged the

paired Illumina reads to form a single consensus sequence prior to

OTU clustering. This step results in a higher confidence that the

base calls for the merged region are correct and thus reduces

sequencing associated errors in the Illumina datasets (Figure 1).

We also incorporated chimera checking with ChimeraSlayer as

part of our RDS analysis pipeline. However, as demonstrated with

the Illumina-sequenced mock community samples, not all

chimeric OTUs were correctly identified and removed. One

reason for this is that the chimera checking process typically

depends on comparing differences in the sequence similarity of the

two ends of a query sequence to two or more reference sequences

derived either from a reference database such as Greengenes or

chosen from within the dataset itself. This method poses a problem

in detection as chimeras present in short sequences from closely

related organisms are more difficult to identify than in longer

sequences. Additionally, chimeric sequences originating from three

or more parent sequences, such as those observed in the Illumina

mock community datasets, may not be identified as chimeric but

as novel sequences instead.

Reference OTU clustering can bias observed diversity
As the volume of sequence data generated by Illumina

instruments is orders of magnitude greater than for the GS FLX,

processing and analysis pipelines that were designed to handle

pyrosequencing datasets have had to be modified to process

Illumina data more efficiently. One such modification has been a

shift from using de novo generation of OTUs for large sequencing

datasets to the use of reference OTUs such as those from the

Greengenes [30,31] or Silva [40] reference databases. The principal

advantage of reference OTU clustering is that it is significantly

faster than de novo OTU generation as it can be run in parallel across

multiple processing cores, and the availability of reference datasets

with pre-constructed phylogenetic trees and taxonomies allows for a

simplified and more efficient analysis pipeline. However, with

reference-based OTU clustering alone the observed microbial

diversity of a sample can only be as diverse as the reference set itself,

which can artificially limit the observed diversity for highly diverse

or exotic environments whose microbial populations have few

representative sequences in reference databases.

In this study we found that performing reference-based OTU

clustering using either the Greengenes 2012 or 2013 references

resulted in a reduction in the number of observed OTUs

compared to de novo OTU clustering (Tables 2 and S1, Figure 2).

The use of reference-based OTU clustering alone also had large

effects on the observed taxonomy some samples, with certain taxa

completely missing or misidentified when reference clustering was

used compared to de novo (Figure 5). While the curators of the

Greengenes database have made great efforts to expand their

reference datasets to include more sequences from highly diverse

and complex microbial communities, our results suggest that

additional improvements are needed to provide better coverage

for many non-human associated microbial environments. This is

of particular importance as a greater number of researchers take

advantage of the low cost of Illumina sequencing to characterize

the microbial communities in many new and diverse environments

that may not be well represented in current reference databases.
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As we demonstrated, one option that researchers have is to

perform reference OTU clustering and then to analyze the

reduced number of sequences that did not match the reference

data set using de novo OTU clustering, which we described above as

the reference plus de novo with ChimeraSlayer, or RDS method.

Our results demonstrated that the RDS method produces alpha

(Table 2) and beta (Figure 2) diversity metrics and taxonomy

summaries (Figure 3) that are more similar to de novo OTU

clustering than reference-based clustering alone. While the current

open reference picking implementation of uclust_ref allows for the

creation of de novo OTUs from reads not assigned to a reference

sequence, this process is limited to running on a single processing

core. Our implementation of two separate steps for reference and

de novo OTU clustering in the RDS method allows for reference

clustering to be performed across multiple processing cores. This

hybrid analysis method allows researchers to efficiently analyze

large sequencing datasets generated with Illumina sequencing

platforms while retaining the ability to identify novel OTUs that

are not currently present in reference datasets.

Limitations of reference databases for taxonomy
assignment

While not always feasible, a priori knowledge of the general

composition of a microbial community can provide important

checks for validating the results of high-throughput 16S sequenc-

ing surveys. Our inclusion of the mock community developed by

the Human Microbiome Project partially served as such a control

to identify potential issues with our library construction, sequenc-

ing and data analysis workflows. When using the Greengenes 2012

reference that was available when we began this study, we found

that the taxonomic composition of the mock datasets differed

greatly from expected, with many OTUs not being classified to the

genus level but to higher taxonomic ranks instead. The release of

the 2013–08 Greengenes reference database resolved many of

these assignment issues, however the genus Escherichia was still not

correctly identified when performing taxonomic assignment of

OTUs with the Greengenes 2013 reference and the genus Listeria

was only identified in the de novo processed datasets.

During our initial analysis of the leech intestinum samples using

the Greengenes 2012 reference no OTUs were assigned to the

genus Aeromonas for any of the datasets regardless of processing

method, a finding inconsistent with previous culture and non-

culture based studies we conducted of the leech intestinum

[41,42]. We subsequently determined that this was due to a lack of

any sequences in the Greengenes reference being annotated to the

genus Aeromonas, with the lowest taxonomic rank being the family

Aeromonadaceae. After communicating this and other findings to the

Greengenes curators, an updated reference taxonomy was released

(Greengenes 2013–08) that included additional genus and species

level annotations compared to the previous release. However, even

after performing taxonomic classifications with this updated

reference only one OTU, representing less than 0.2% of all

sequences in the V4-V5 datasets, was classified as Aeromonas when

using the RDS method while all other OTUs were classified as

Aeromonadaceae (data not shown). It is important to note that while

this classification is not technically incorrect, it is less informative

about the composition of the community and can potentially lead

to inaccurate conclusions in situations where a priori knowledge of

a microbial community is unknown.

This example also highlights the need for wider community

efforts to ensure the highest possible accuracy of large reference

datasets such as Greengenes. As the current version of the

Greengenes database comprises over 1 million individual sequenc-

es, it is extremely challenging for the manual and automated

curation steps to successfully identify and remove all potential

chimeric sequences and ensure accurate taxonomic assignments

for all sequences in the database. While this had a noticeable effect

on the taxonomic composition of the leech intestinum, it appeared

to have little to no effect on the composition of the human stool,

rumen and sewage samples. Our findings suggest that researchers

who rely on a reference dataset, such as for OTU clustering or

taxonomy assignment as we do with the RDS processing method,

should take caution in the interpretation of their results.

Low levels of cross-contamination in Illumina datasets
While our results show that overall Illumina and 454

pyrosequencing produced similar alpha and beta diversity results,

we did observe cases of dataset contamination that appear to be

specific to Illumina of 16S amplicons. For libraries sequenced at

the same time, we also observed instances of index misassignment

that resulted in a small percentage of reads from one library being

incorrectly assigned an index sequence corresponding to a

different library. This was most apparent when we sequenced

the V4-V5.Ib libraries at the same time as non-ribosomal

amplicon libraries. The source of index misassignment likely

arises from image analysis errors during the index sequencing

phase of the run, which may be addressed by future upgrades to

the MiSeq software, hardware, or reagent kits. Reducing the target

cluster density for amplicon libraries below Illumina’s recom-

mended values may reduce the occurrence of this error, while also

improving read quality as previously discussed by Kozich et al.

[22]. The use of dual indexing formats where indices are present at

both ends of the amplicon being sequenced would likely decrease

the occurrence of index misassignment, as errors would need to

occur in both indices in order for a read to be assigned to the

incorrect sample. We also observed a low percentage of reads from

the phiX control library in all of the raw Illumina datasets we used

in this study. While updates to the MiSeq’s RTA base-calling

software have reduced the potential for phiX reads to be

incorrectly assigned a valid index sequence they did not eliminate

it. We removed phiX reads from the datasets prior to QIIME

analysis by applying the pre-processing methods detailed above.

An additional concern with Illumina sequencing that we did not

directly quantify with our datasets is low-levels of carryover

contamination that occurs between consecutive MiSeq runs. This

issue was acknowledged in a technical bulletin from Illumina

which quantified the level of carryover contamination as typically

being less than 0.1% of reads for a run being carried over into and

contaminating a subsequent run [33].

The combination of index misassignment occurring at a rate of

,0.06% and carryover contamination between MiSeq runs of less

than 0.1% can provide a baseline value that serves as a threshold

to help distinguish which results stem from true biological signal

and which may be due to noise. In order to mitigate index

misassignment and sample carryover contamination for experi-

ments that require high levels of sensitivity, we have begun to

include one or more indexed control samples to more accurately

quantify this occurrence. These control libraries can be created

from a synthetic template, pure culture, or mock community and

serve as inline controls for determining the level of index

misassignment that occurs between different samples within a

run and carryover contamination across separate sequencing runs.

It is also recommended to alternate the indices used between runs

to further reduce potential carryover contamination in high-

sensitivity experiments. While researchers who are primarily

concerned with identifying broad changes in microbial

composition will typically not be affected by index misassignment

and carry-over contamination, implementing the above listed
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suggestions will improve the quality and accuracy of amplicon

sequencing datasets produced on Illumina instruments. Research-

ers focused on examining the ‘‘rare biosphere’’ or the role of low

abundant organisms in a community may need to implement

additional precautions.

Our analysis shows that primers designed for Roche 454

instruments can be readily modified for use on Illumina

instruments and produce consistent results. When we utilized the

same template primers, the Illumina-produced datasets were more

similar to the 454-produced datasets than when different template

primers were used. The consistency between platforms was further

improved by using the RDS processing pipeline, maximizing the

quality of the sequences by merging of the paired Illumina reads,

and minimizing artifacts due to the use of reference datasets and

the inclusion of chimera checking. To account for and reduce the

low levels of index misassignment and carryover contamination

that we observed, we recommend the use of control libraries and

alternating indices between consecutive sequencing runs when

using the MiSeq. Overall our results show that Illumina

sequencing of 16S rRNA genes is a cost effective approach that

can readily supplant 454 pyrosequencing as the new standard

analysis method for microbial populations.
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