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Abstract. The sinking of particulate organic carbon (POC)
is a key component of the ocean carbon cycle and plays an
important role in the global climate system. However, the
processes controlling the fraction of primary production that
is exported from the euphotic zone (export ratio) and how
much of it survives respiration in the mesopelagic to be se-
questered in the deep ocean (transfer efficiency) are not well
understood. In this study, we use a three-dimensional, cou-
pled physical–biogeochemical model (CCSM–BEC; Com-
munity Climate System Model–ocean Biogeochemical Ele-
mental Cycle) to investigate the processes controlling the ex-
port of particulate organic matter from the euphotic zone and
its flux to depth. We also compare model results with sed-
iment trap data and other parameterizations of POC flux to
depth to evaluate model skill and gain further insight into
the causes of error and uncertainty in POC flux estimates. In
the model, export ratios are mainly a function of diatom rel-
ative abundance and temperature while absolute fluxes and
transfer efficiency are driven by mineral ballast composition
of sinking material. The temperature dependence of the POC
remineralization length scale is modulated by denitrification
under low O2 concentrations and lithogenic (dust) fluxes.
Lithogenic material is an important control of transfer effi-
ciency in the model, but its effect is restricted to regions of
strong atmospheric dust deposition. In the remaining regions,
CaCO3 content of exported material is the main factor affect-
ing transfer efficiency. The fact that mineral ballast compo-
sition is inextricably linked to plankton community structure
results in correlations between export ratios and ballast min-
erals fluxes (opal and CaCO3), and transfer efficiency and
diatom relative abundance that do not necessarily reflect bal-
last or direct ecosystem effects, respectively. This suggests
that it might be difficult to differentiate between ecosystem
and ballast effects in observations. The model’s skill in re-
producing sediment trap observations is equal to or better

than that of other parameterizations. However, the sparseness
and relatively large uncertainties of sediment trap data makes
it difficult to accurately evaluate the skill of the model and
other parameterizations. More POC flux observations, over
a wider range of ecological regimes, are necessary to thor-
oughly evaluate and test model results and better understand
the processes controlling POC flux to depth in the ocean.

1 Introduction

The transfer of carbon from the upper ocean to deep waters
through the sinking of particulate biogenic material (biolog-
ical pump,Volk and Hoffert, 1985) is a major component of
the ocean carbon cycle and plays an important role in regu-
lating atmospheric CO2 levels (Archer et al., 2000; Siegen-
thaler et al., 2005). However, the processes controlling the
fraction of primary production that is exported from the eu-
photic zone (export ratio) and how much of it survives res-
piration in the mesopelagic to be sequestered in the deep
ocean (transfer efficiency) are not well understood (Boyd
and Trull, 2007). Biogenic minerals (CaCO3 and opal) are
thought to be important controlling factors (ballast hypoth-
esis) by increasing the density of sinking particles and/or
providing protection against remineralization. The ballast
hypothesis is based on observations of a strong correla-
tion between POC (particulate organic carbon) fluxes and
the flux of biogenic minerals in deep sediment traps (Arm-
strong et al., 2002; François et al., 2002; Klaas and Archer,
2002). Ecosystem structure is also thought to play an im-
portant role (Guidi et al., 2009; Lam et al., 2011; Henson
et al., 2012a, b; Wilson et al., 2012). According to this view,
diatom-dominated phytoplankton communities in productive
areas, such as high-latitude environments and upwelling re-
gions, produce large, dense and relatively labile aggregates
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that are readily exported but decay rapidly at depth, result-
ing in a high export ratio but low transfer efficiency in these
regions. Conversely, in lower-latitude oligotrophic environ-
ments, where diatoms are largely absent, primary produc-
tion is low and mostly regenerated; consequentially, the small
fraction of material that is eventually exported is likely to be
refractory and undergo relatively little degradation at depth,
resulting in low export ratio but high transfer efficiency. A
“packaging effect” may also be at work (François et al.,
2002). Carbonate-dominated regions tend to produce hydro-
dynamic, fast-sinking fecal pellets that reach greater depths
(high transfer efficiency), while opal-dominated regions tend
to produce slower sinking, loose aggregates that are rapidly
remineralized in the mesopelagic (lower transfer efficiency).
Understanding the processes that control the flux of particu-
late organic material to the deep ocean in order to quantify
the strength and efficiency of the biological pump is essen-
tial to an accurate projection of the ocean’s response to and
feedback on anthropogenic perturbations.

Sparse in situ data from sediment traps have relatively high
associated uncertainties and do not resolve the spatial vari-
ability in the vertical particle flux. This makes it difficult
to understand the mechanisms driving the vertical particle
flux and leads to large uncertainties in global and regional
budgets. In this context, numerical models offer a powerful
research tool. Models supplement observations by provid-
ing flux estimates in undersampled regions and at spatial–
temporal coverage and resolution that are impractical or dif-
ficult to sample, thus allowing us to investigate phenomena
poorly resolved by observational data. Models also provide
the means to synthesize the available information into a prac-
tical and useful framework that can be used for quantitative
analysis and evaluation, and as an heuristic tool that offers
guidance and recommendations for future observations. In
addition, comparison of model results with observations al-
lows us to assess model skill and leads to improved mathe-
matical representations of biogeochemical processes.

In this study, we use results from a three-dimensional, cou-
pled physical–biogeochemical model in combination with in
situ data from sediment traps to (1) investigate the processes
controlling the export of particulate organic matter (POM)
from the euphotic zone and its flux to depth, and (2) see how
these processes interact to produce spatial and temporal vari-
ability in export ratios and transfer efficiencies. We also com-
pare our model results with sediment trap data and other pa-
rameterizations of particulate organic carbon (POC) flux to
depth to evaluate model skill and gain further insight into the
causes of error and uncertainty in POC flux estimates.

2 Methods

2.1 Model formulation

The model used in this study is the Community Cli-
mate System Model–ocean Biogeochemical Elemental Cy-
cle (CCSM–BEC) which consists of an upper-ocean ecolog-
ical module (Moore et al., 2004) and a full-depth ocean bio-
geochemistry module (Doney et al., 2006) both embedded
in a three-dimensional (3-D) global physical ocean general
circulation model (Collins et al., 2006). The ecosystem mod-
ule includes three phytoplankton functional groups (small pi-
coplankton/nanoplankton, diatoms and diazotrophs), a gen-
eral adaptive zooplankton class and multi-nutrient (N, P, Si,
Fe) limitation on phytoplankton growth (Doney et al., 2009a,
b). Calcification by coccolithophores is parameterized as a
fraction of the picoplankton/nanoplankton production as a
function of temperature and nutrients. The biogeochemistry
module (Doney et al., 2006) is based on an expanded ver-
sion of the Ocean Carbon Model Intercomparison Project
(OCMIP) biotic model (Najjar et al., 2007) and includes
full carbonate system thermodynamics, air–sea CO2 and
O2 fluxes, nitrogen fixation and denitrification (Moore and
Doney, 2007), and a dynamic iron cycle with atmospheric
dust deposition, water-column scavenging and a continental
sediment source. More detailed information on the ecologi-
cal and biogeochemical components of the model is available
in Moore et al.(2004), Doney et al.(2009a) andDoney et al.
(2009b).

The treatment of sinking particulate organic material in
CCSM–BEC is implicit and based on the ballast model
of Armstrong et al.(2002). POC, particulate CaCO3 and
opal are produced by phytoplankton and zooplankton mor-
tality, and grazing by zooplankton on all three phytoplank-
ton groups (Eqs.A1–A3 in AppendixA1). The vertical flux
of POM is assumed to decay exponentially with depth with
a remineralization length scale (λ) that varies according to
the mineral content of the organic matter. Sinking POM
is assumed to have “free” and mineral-associated fractions.
The mineral-associated portion is further divided into soft
and “hard” fractions. The free fraction decays following the
remineralization length scale for POC, while the mineral-
associated fraction decays according to the corresponding
soft mineral dissolution length scale. The hard mineral-
associated fraction is assumed to be fast sinking and/or resis-
tant to degradation (very long remineralization length scale)
and thus to sink to the bottom of the ocean before rem-
ineralization. Ballast minerals include CaCO3 from coccol-
ithophores, biogenic silica (opal) from diatoms and dust from
atmospheric deposition. The remineralization of POC and
opal are known to be strongly influenced by temperature, so
the remineralization length scales for free POC and opal in-
crease with decreasing water temperature following temper-
ature response functions (Eqs.A15, A16 in AppendixA1).
The remineralization length scale for free POC also increases
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in regions of low dissolved O2 (< 4 mmolm−3) where or-
ganic matter is oxidized less efficiently through denitrifica-
tion. The vertical particle flux model is, in essence, equiva-
lent to a sum of exponentials in which the different terms,
representing organic matter of different mineral composition
under different environmental conditions, change in space
and time. The vertical particle flux component of CCSM–
BEC, including equations, parameter values and the routing
of POC to the different subclasses, is described in more detail
in AppendixA1.

The version of CCSM–BEC we use has a resolution of
3.6◦ in longitude and 0.8–1.8◦ in latitude, and 25 vertical
levels (Yeager et al., 2006). The effects of mesoscale eddy
transport and mixing are parameterized followingGent and
McWilliams (1990). The Large et al.(1994) K-Profile Pa-
rameterization is implemented in the vertical to capture sur-
face boundary-layer dynamics and interior diapycnal mix-
ing. The ocean circulation model is forced with physical cli-
mate forcing from atmospheric reanalysis and satellite data
products (Doney et al., 2007) and time-varying dust deposi-
tion (Mahowald et al., 2003). Analysis is performed on a 12-
month climatology computed from the last 20 yr of a 840 yr
run with repeat annual cycle of physical forcing and dust de-
position, and fixed pre-industrial atmospheric CO2 concen-
trations (280 ppmv). CCSM–BEC shows good skill in repro-
ducing observed spatial distributions as well as seasonal and
interannual variability patterns of sea surface temperature,
mixed layer depth, surface chlorophyll and nutrients, and net
primary production (Doney et al., 2007, 2009b).

2.2 Model analysis

We investigate the dynamics of vertical POC flux in CCSM–
BEC by fitting the model results to a relatively simple three-
parameter exponential model of POC flux to depth and look-
ing at the distribution and range of the fit parameter values,
and their relationship to environmental and biogeochemical
factors. The idea is to synthesize the complexity of CCSM–
BEC’s particle flux model into a smaller, yet representative,
set of parameters that can be more easily studied and under-
stood. The exponential model of POC flux(F ) at depth(z)
is defined as

F(z) = f NPP
(
αe−

1
λ
(z−z0) + (1− α)

)
, (1)

wheref is the fraction of vertically integrated net primary
production (NPP) that is exported (export ratio),α is the la-
bile fraction of POC,λ is the remineralization length scale,
andz0 is the export depth. The derivation of Eq. (1) is pre-
sented in AppendixA2.

To simplify analyses and computations, annual and
seasonal (January–March, April–June, July–September,
October–December) means of net primary production (NPP),
POC production, and biomineral (CaCO3 and opal), dust and
POC vertical fluxes are computed from the 12-month cli-
matology of model results. In this study, NPP is defined as

the fixation of carbon by the phytoplankton groups through
photosynthesis and POC production is defined as the pro-
duction of dead particulate organic matter (detritus). Export
depth (bottom of euphotic zone ) shows significant regional
and seasonal variation (Najjar and Keeling, 1997; Buesseler
and Boyd, 2009) and large differences (> 100 m) between
locations and/or seasons can significantly impact export esti-
mates (Boyd and Newton, 1999). So export depth (z0) fields
are computed from the annual and seasonal means as the
depth where POC production is equal to 1 % of maximum
POC production in the water column. The parametersα, λ

andf are then estimated by fitting Eq. (1) through a non-
linear least squares technique to the annual and seasonal
means of NPP and POC flux profiles at each CCSM–BEC
grid point. Grid cells with water columns shallower than
900 m and/or with seasonal ice coverage greater than 10 %
are excluded from the analysis. The Arctic ocean region is
also excluded from the analysis, due to the lack of observa-
tions to evaluate model skill in the region (see Sect.2.3), and
generally poor fits due to unrealistic model POC flux profiles,
particularly under the ice in winter.

The range and distribution ofα, λ andf values represent
variations in organic matter composition, transfer efficiency
and export ratios, and reflect the flexibility and range of be-
havior of CCSM–BEC’s particle flux model. Examination of
the relationship betweenα, λ andf values and environmen-
tal and biogeochemical factors gives us insight into the pro-
cesses driving the export of POC from the euphotic zone and
its flux to the deep ocean, and how these processes interact to
produce spatial and temporal variability in export ratios and
transfer efficiencies.

In addition to the exponential model parameters, we also
examine direct CCSM–BEC estimates of POC flux, export
ratios and transfer efficiencies. CCSM–BEC export ratio is
computed as the annual POC flux atz0 (export flux) divided
by the annual vertically integrated NPP. Transfer efficiency
is computed as the ratio of annual POC flux at 2000 m to
the annual POC flux atz0. We chose 2000 m as it is a com-
monly used reference depth for computing transfer efficiency
(Henson et al., 2011, 2012b), and because particulate fluxes
tend to not vary significantly below this depth (François et al.,
2002; Honjo et al., 2008).

2.3 Model evaluation

We evaluate CCSM–BEC’s skill by comparing model POC
fluxes with in situ data from sediment traps. Here we use an-
nual mean POC fluxes at 254 locations (Fig.1), computed
from a climatological year compiled byLutz et al.(2007) us-
ing 25 yr of observations from sediment traps. For the com-
parison, the CCSM–BEC mean annual POC flux is computed
from the 12 month model climatology with POC flux values
extracted at the locations and depths of the sediment traps.
Model and observations are compared globally and for each
individual region of the model domain (Fig.1).
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Fig. 1.CCSM–BEC model domain regions and location of sediment traps in theLutz et al.(2007) data set.

We also compare CCSM–BEC’s skill with that of other pa-
rameterizations of POC flux to depth to gain insight into the
sources of bias, error and uncertainty in POC flux estimates.
The empirical model ofLutz et al.(2007) and the exponential
model (Eq.1) presented in Sect.2.2are evaluated against the
same sediment trap data fromLutz et al. (2007). The Lutz
model estimates the annual mean POC flux at depth from
annual mean NPP using an exponential relationship with pa-
rameters that vary spatially as functions of the seasonal am-
plitude in NPP (Lutz et al., 2007). The authors’ assumption
is that the fraction and biodegradability of exported produc-
tion are mainly influenced by ecosystem structure, which is
related to the seasonal amplitude in NPP. In stable environ-
ments, primary production is mostly regenerated so a smaller
fraction of NPP is exported and the exported material is more
refractory, while in seasonal environments, production ex-
ceeds consumption and recycling, so a larger fraction of NPP
is exported in a more labile state. POC flux estimates are
computed at the locations and depths of the sediment traps
using the Lutz model and CCSM–BEC-derived and satellite-
derived NPP extracted at the sediment trap locations. Satel-
lite NPP is computed from a 1× 1◦ monthly climatology
of surface chlorophyll from SeaWiFS (Sea-viewing Wide
Field-of-view Sensor) using the VGPM (Vertically General-
ized Production Model) model ofBehrenfeld and Falkowski
(1997). To investigate the effect of factors associated with the
seasonal amplitude in NPP on POC flux estimates, we com-
pute POC flux at the locations and depths of the sediment
traps using a “null” version of the Lutz model, in which the
parameters are set to their spatial means and held constant
for all locations.

POC flux estimates are also obtained using the exponential
model (Eq.1), fitted to the sediment trap measurements and
NPP data, to compute POC flux at the locations and depths of
the sediment traps. We fit Eq. (1) to all 254 POC flux obser-
vations combined, using annual mean NPP values from both
satellite and CCSM–BEC extracted at the sediment trap loca-

tions. This results in two sets of global parametersα, λ and
f , one for each NPP data set (satellite and CCSM–BEC),
that are used to compute POC flux at the sediment trap lo-
cations. To examine the effect of regional variations in or-
ganic matter composition, remineralization length scale and
export ratios on POC flux estimates, we fit Eq. (1) to sed-
iment trap and NPP data grouped by model domain region
(Fig. 1). This is also done using both satellite and CCSM–
BEC NPP. The POC flux is then computed at the sediment
trap locations using regionally varyingα, λ and f values,
and their corresponding NPP data set (satellite and CCSM–
BEC). In the regions where the fit is poor or where there are
no observations,α, λ andf are set to the global values com-
puted in the previous step. The export depth (z0) is set to the
CCSM–BEC global average (110.4 m, Fig.4b) in all expo-
nential model fits. In summary, we evaluate eight different
parameterizations of POC flux to depth against the sediment
trap data. Namely, the CCSM–BEC model, theLutz et al.
(2007) model with satellite and CCSM–BEC NPP, theLutz
et al.(2007) null model with satellite NPP, and the exponen-
tial model (Eq.1) with satellite and CCSM–BEC NPP and
with constant and regionally varying parameters.

In this study, we use the simple exponential model (Eq.1)
in two different ways. First we use it to “summarize” the
complexity of the CCSM–BEC particle flux model in a small
set of parameters (α, λ andf ) that are then used to describe
and analyze the behavior of the CCSM–BEC model. The spa-
tial and seasonal distributions of these parameters and their
errors, and their relationship with environmental and bio-
geochemical factors, give us insight into the processes and
mechanisms controlling the export and transfer efficiency in
the CCSM–BEC model (Section3.3). We also use the expo-
nential model, fitted to sediment trap measurements, in the
skill evaluation of different models/parameterizations against
observations. Comparison of models of varying complexity
against observations gives us insight into the sources of bias
and uncertainty in the different parameterizations, and tells
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us whether observations provide enough contrast and reso-
lution to adequately evaluate models (Section3.1 and Sec-
tion 4).

3 Results

3.1 Comparison with observations

Overall, CCSM–BEC does a reasonably good job estimat-
ing the observed annual mean POC fluxes at the locations
and depths of the sediment traps in the Lutz data set. A
type II linear regression of log10-transformed POC flux esti-
mates from CCSM–BEC against log10-transformed observa-
tions results in a correlation coefficient of 0.65 and a slope of
0.91 (Fig.2a). However, the agreement between model and
observations can vary significantly by region. CCSM–BEC
estimates are consistent with observations in most regions
(Fig. 2b, g–l), with correlations ranging from 0.81 (northern
subtropical Atlantic) to 0.56 (North Pacific). In the north-
ern subtropical Pacific (Fig.2g) and northern subtropical At-
lantic (Fig.2k), CCSM–BEC tends to underestimate the POC
flux at the shallower traps, and in the North Pacific (Fig.2h)
CCSM–BEC consistently underestimates the sediment trap
fluxes at all depths. In the southern subtropical Pacific and
western equatorial Pacific (Fig.2d, e), CCSM–BEC and ob-
servations are uncorrelated (r = −0.08) and negatively cor-
related (r = −0.25), respectively. This is due to the combi-
nation of a low number of observations in these regions and
errors and uncertainties in the model and sediment trap esti-
mates. Model and observational errors, which tend to can-
cel each other out in large samples, have a larger impact
on correlations and regression slopes when sample size is
small. CCSM–BEC also significantly underestimates the flux
at four of the nine sediment traps in the western equatorial
Pacific, resulting in a negative correlation with observations.
In the eastern equatorial Pacific (Fig.2f), observations vary
within a narrow range (0.2–0.5 mmolm−2d−1), and thus un-
certainties in the model and sediment trap estimates have a
larger relative impact, resulting in a large scatter around the
regression line and low correlation (r = 0.23). In the north-
ern Southern Ocean, the trend is correct (b ≈ 1) but the over-
estimation and underestimation of the fluxes at shallow and
deep traps, respectively, results in a wide scatter and low cor-
relation (r = 0.30).

Figure 3 shows the estimated annual mean POC fluxes
at sediment trap locations and depths from eight different
parameterizations of POC flux to depth (including CCSM–
BEC) plotted against observations from the Lutz data set.
With some variation, all parameterizations show reasonably
good skill in reproducing the annual mean POC fluxes esti-
mated from sediment traps. Type II regression slopes from
the log10-transformed fluxes vary between 0.71 and 0.97,
and correlation coefficients range from 0.5 to 0.72. In the
CCSM–BEC and Lutz models, different regional errors and

biases compensate for each other, resulting in similar overall
skill for both models (r ≈ 0.65, m > 0.9). The Lutz model
overestimates the POC flux in the North Atlantic and un-
derestimates it in the eastern equatorial Pacific and in many
locations in the northern Indian Ocean, while CCSM–BEC
underestimates the POC flux in the northern subtropical At-
lantic and North Pacific and overestimates it in the eastern
equatorial Pacific and several locations in the northern and
southern Southern Ocean. The negligible difference in skill
between the Lutz and the Lutz null models (Fig.3b, c) sug-
gests that the seasonal amplitude in NPP has little effect on
model skill or that it is not a good proxy for differences in
ecosystem structure. Another possible explanation is that the
magnitude of NPP (annual mean) already contains informa-
tion on ecosystem structure. Diatoms tend to be dominant
in productive (high annual NPP) regions, while nanoplank-
ton/picoplankton are dominant in oligotrophic areas (low an-
nual NPP). Given the correlation between NPP and phyto-
plankton community structure, the added effect of variations
in the seasonal amplitude in NPP may not be significant com-
pared to the relatively large uncertainties in sediment trap es-
timates. The Lutz model shows lower skill (r = 0.5,b < 0.9)
when using NPP from CCSM–BEC. This is in part expected
as the equations used to compute the parameters in Lutz’s
exponential relation were obtained from fits to the seasonal
variation index (SVI = temporal coefficient of variation of
12 month climatology,Lutz et al.(2007)) of SeaWiFS NPP.
Therefore, errors and biases in CCSM–BEC NPP can have
an effect. CCSM–BEC significantly underestimates NPP in
parts of the North Pacific and in the northern subtropical At-
lantic along the upwelling region off the west coast of Africa
(Doney et al., 2009b), where a number of the sediment traps
are located (Fig.1). As a result, the Lutz model with CCSM–
BEC NPP underestimates the POC flux in a large number of
locations in these regions. The SVI for CCSM–BEC NPP is
also significantly higher than that for SeaWiFS NPP at many
trap locations in the North Atlantic and northern and south-
ern Southern Ocean. This leads to significantly higher export
ratios and a decrease in the remineralization length scale in
the Lutz model, and a net increase in the POC flux to depth at
these locations compared to estimates using SeaWiFS NPP.
The underestimation of POC fluxes at sites in the North Pa-
cific and northern subtropical Atlantic, and the overestima-
tion of POC fluxes at locations in the North Atlantic and
Southern Ocean, result in a wider scatter and lower corre-
lation for the Lutz model using CCSM–BEC NPP (Fig.3d).

As expected, the exponential model (Eq.1) with re-
gionally varying parameter values (α, λ, f ) (Fig. 3g, h)
shows better skill (higher correlation, slope closer to 1) than
the exponential model with spatially constant parameters
(Fig. 3e, f). However, due to its simpler formulation, the
exponential model does not provide the flexibility neces-
sary to reproduce the observed variation in POC flux pro-
files, and all four parameterizations of the exponential model
(global, regional, satellite, and CCSM–BEC NPP) tend to
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underestimate shallow fluxes and overestimate deep fluxes
(Fig. 3e–h), when compared to CCSM–BEC or the Lutz
model (Fig.3a–d). As in the case of the Lutz model, errors
and biases in CCSM–BEC NPP lead to a wider scatter and
lower correlations between model estimates and observations
in both the global and regional exponential models (Fig.3e–
h).

The magnitude of export ratios (f ) in CCSM–BEC and
their relationship with sea surface temperature (SST) are con-
sistent with those reported inHenson et al.(2011) (Fig. 8d).
Export ratios are inversely correlated with SST (r = −0.6),
ranging from 0.07–0.3 in temperate and subpolar regions
to 0.03–0.2 in warm subtropical and equatorial waters. The
wide scatter in the northern and southern Southern Ocean,
subtropical Pacific and Atlantic (northern and southern) and
Indian Ocean (northern and southern) results from the fact
that export ratios in CCSM–BEC are mainly a function of
the relative abundance of diatoms, which varies significantly
in these regions (Fig.8h). The subtropical Pacific and At-
lantic and the Indian Ocean include productive upwelling ar-
eas where diatoms dominate and oligotrophic areas where
diatoms are virtually absent. TheHenson et al.(2011) export
ratio estimates, however, include values higher than 0.35 in
the Southern Ocean and lower than 0.03 in the subtropics,
and the export ratio estimates from CCSM–BEC are gen-
erally higher in the subtropics and lower in higher latitudes
than those from theHenson et al.(2011) exponential relation-
ship (Fig.8d). Except for regions with SST> 25◦C, CCSM–
BEC estimates of export ratios are significantly lower than
those from the linearf vs. SST relationship ofLaws et al.
(2000).

3.2 CCSM–BEC global patterns

Annual mean export depth (z0) in CCSM–BEC is generally
shallower (< 100 m) in productive areas, such as coastal and
equatorial upwelling and high-latitude regions, where both
the euphotic zone and mixed layer are relatively shallow dur-
ing the productive months, and deeper (> 120 m) in the olig-
otrophic gyres, where the euphotic zone is deep (> 100 m),
and parts of the North Atlantic with very deep winter mixed
layers (Fig.4a, b). Strong vertical mixing transports plankton
deeper in the water column so grazing, mortality and POC
production can occur below the euphotic zone, independent
of light and NPP. Export depth is also higher (> 120 m) in the
Gulf Stream and Kuroshio frontal zones, and along the sub-
polar front in the Indian and Pacific sectors of the northern
Southern Ocean, due to deep mixing associated with strong
air-sea cooling and evaporation and mode water formation
(see for exampleMarshall et al., 2009). Export flux (POC
flux at z0) closely resembles NPP (Fig.4b, c) and the two
fields are well correlated (r = 0.82). Particle export is high
(> 20 gCm−2yr−1) in upwelling and high-latitude regions,
and very low (< 2 gCm−2yr−1) in the center of subtrop-
ical oligotrophic gyres (Fig.4c). As expected, particle ex-

port tends to be higher where the export depth is shallow and
vice versa, with exception of the Gulf Stream and Kuroshio
frontal zones, where export fluxes are relatively high and the
export depth is deeper than 120 m (Fig.4a, c). The highest
export fluxes (> 40 gCm−2yr−1) are observed in the equato-
rial and coastal upwelling regions off the west coast of Africa
and South America, the Arabian Sea, the subpolar frontal
zones south of Australia and New Zealand, and off the south-
east coast of South America (Fig.4c). The globally inte-
grated total POC export across spatially varying export depth
(z0) is 6.04 Pg C yr−1. The flux of POC at 2000 m shows sim-
ilar geographical patterns to the particle export (Fig.4c, d),
with values ranging from less than 0.2 gCm−2yr−1 in the
oligotrophic gyres to greater than 2 gCm−2yr−1 in the equa-
torial Pacific, Arabian Sea and the subpolar frontal region off
the southeast coast of South America (Fig.4d). The globally
integrated total POC flux at 2000 m is 0.21 PgCyr−1.

Export ratio is high (> 20 %) in upwelling and high-
latitude regions, where production is high and export depths
are shallow; it is low (< 5 %) in the center of oligotrophic
gyres, where NPP is very low and export depths are deep
(Fig.4a, b, e). Areas of moderate production and deep export
depths in the northern Southern Ocean and parts of the North
Atlantic have export ratios of the order of 10 % (Fig.4e). The
global area-weighted mean export ratio is 12.9 %. Transfer
efficiency and export ratio have generally opposing spatial
distributions, except for the upwelling region in the equa-
torial Pacific and west coast of South America, where both
are higher than the global mean. Transfer efficiency is high
(> 7 %) in the center of oligotrophic gyres, reaching up to
40 % in center of the North Atlantic gyre, and low (< 5 %)
in productive high-latitude regions and over most of the sub-
tropical western Pacific (Fig.4e, f). The global area-weighted
mean transfer efficiency is 5.5 %.

3.3 Exponential model

The least-squares fit of the exponential model (Eq.1) to
CCSM–BEC annual and seasonal means of vertical POC
flux and NPP is very good. Linear regressions of “predicted”
(exponential model) against “observed” (CCSM–BEC) POC
flux at export depth (z0), and at 500, 1000 and 2000 m pro-
duce slopes and correlation coefficients very close to 1 (Ta-
ble 1). We are thus confident that the exponential model ac-
curately represents the range of behavior of CCSM–BEC’s
vertical particle flux model.

The spatial distribution of the parametersα, λ andf and
their standard errors, obtained from fitting Eq. (1) to CCSM–
BEC annual mean POC flux profiles and NPP, is shown in
Fig. 5. Labile fraction of POC (α) is above 90 % over most
of the ocean, except in high dust deposition regions (Arabian
Sea and the North Atlantic subtropical gyre), where it reaches
values below 40 % (Fig.5a). Labile fraction and transfer ef-
ficiency have spatially opposing patterns (Figs.4f and 5a).
Regions with lower labile fraction (80 %< α < 95 %) in the
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Fig. 2.Annual mean POC flux from CCSM–BEC model at sediment trap locations and depths plotted against observations from the Lutz data
set for the whole globe (all points combined) and each domain region (Fig.1). Sediment trap data is absent in the southern Indian Ocean,
so that region is not shown. Solid black lines show type II linear regression and dotted black lines show the 1: 1 slope. The correlation
coefficient (r) and regression slope (m) for the log10-transformed data are shown in each panel. Color scale indicates depth of sediment
traps.

Table 1. Parameters from type II linear regressions of POC flux
estimates from exponential model (Eq.1) against POC flux from
CCSM–BEC at different depths. The regression slopes are shown
with their 95 % confidence interval. The linear regressions were
computed using annual and seasonal means of POC flux from
CCSM–BEC and their corresponding exponential model fit (annual
and seasonal, see Sect.2.2).

annual seasonaldepth
slope correlation slope correlation

z0 0.983± 0.002 0.998 1.017± 0.001 0.998
500 m 0.952± 0.004 0.989 0.985± 0.002 0.993
1000 m 1.141± 0.007 0.971 1.105± 0.003 0.981
2000 m 1.044± 0.003 0.995 1.039± 0.001 0.996

subtropical parts of the South Atlantic, North and South Pa-
cific, east equatorial Pacific, and along the subpolar fronts
in the South Pacific and southern Indian Ocean correspond

to areas of higher transfer efficiency (Fig.4f), and regions
of higher labile fraction (α > 95 %) in the North Atlantic
and Pacific and just south of the equatorial Pacific have low
transfer efficiency. The POC remineralization length scale
(λ) generally increases with latitude, most likely due to tem-
perature effects (see Sect.2.1). λ ranges from≈ 150 m in the
tropics and subtropics to greater than 200 m at high-latitudes
regions (Fig.5c). The highest values (> 250 m), however, oc-
cur in the upwelling region off the west coast of the Amer-
icas, in the northern Indian Ocean and in a small region in
the North Atlantic subtropical gyre. The lower labile fraction
(< 50 %) and higher remineralization length scale (> 250 m)
in the northern subtropical Atlantic are indicative of a higher
proportion of POC reaching the deep ocean, and thus high
transfer efficiency as shown in Fig.4f. The distribution of ex-
port ratio (f ) in the exponential model (Fig.5e) is virtually
identical to that from CCSM–BEC (Fig.4e), highlighting the
good fit of the exponential model.
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Fig. 3. POC flux estimates at sediment trap locations plotted against observations from the Lutz data set:(a) CCSM-BEC model,(b) Lutz
model using satellite NPP,(c) Lutz null model using satellite NPP,(d) Lutz model using CCSM–BEC NPP;(e) and(f) show estimates from
fit of exponential curve (Eq.1) to Lutz data set (all data points combined) using NPP from satellite and CCSM–BEC, respectively;(g) and
(h) show estimates from fit of exponential curve (Eq.1) to Lutz data set for each region of the model domain (Fig.1) using NPP from satellite
and CCSM–BEC, respectively. In(g) and(h), the regions with no observations or poor fit use parameter values from the global fit (e andf).
Solid black lines show the type II linear regression of the log10-transformed data. The correlation coefficient (r) and regression slope (m) are
shown in each panel. Color scale indicates depth of sediment traps.

The seasonal cycles ofα, λ andf for each of the model
domain regions (Fig.1) are shown in Fig.6a–c. Labile frac-
tion of POC (α) remains relatively constant and above 90 %
in most regions (Fig.6a). In the northern subtropical At-
lantic, α is significantly lower, ranging from 85 % in win-
ter to less than 75 % in the summer months. In the northern
Indian Ocean and northern and southern Southern Ocean,α

also reaches a minimum in summer and winter, respectively.
In the North Atlantic,α is close to 95 % for most of the year
but drops below 90 % in winter. The seasonal decrease in the
POC labile fraction in these four regions is directly related
to the increase in the fraction of dust in the particulate sink-
ing detritus (Fig.6g). In the northern subtropical Atlantic,
North Atlantic, and southern Southern oceans, atmospheric
dust deposition is relatively constant in time, so the minima
in α occur when NPP is at its lowest value (winter in the
southern Southern Ocean and North Atlantic and summer in
the northern subtropical Atlantic, Fig.6f). In the northern In-
dian Ocean, the decline in POC labile fraction in summer is
smaller, and is associated with a marked increase in atmo-
spheric dust deposition (not shown).

The decreases in POC labile fraction in the North Atlantic
in winter and the northern subtropical Atlantic in the summer
are accompanied by a significant increase in the POC rem-
ineralization length scale (λ), denoting seasonal variations
in transfer efficiency in these regions (Fig.6a, b). Low la-
bile fraction and long remineralization length scale in these

regions are the result of low productivity and elevated dust
deposition (Figs.4b and5c). The small increase inλ in the
northern Southern Ocean in winter can be attributed to lower
temperatures and higher fraction of CaCO3 in sinking partic-
ulate material (Fig.6d, i). The increase in the ratio of CaCO3
to POC flux in the northern Southern Ocean in winter is due
to a decrease in the export of POC relative to CaCO3, rather
than an increase in CaCO3 flux. On a regional scale, export
ratio (f ) is generally proportional to the ratio of primary
production by diatoms to total primary production (Fig.6c,
e). Regions with high NPPdiat/NPPtot have highf and vice
versa. This broad spatial pattern is modulated by seasonal
variations at high-latitude regions (southern Southern Ocean,
northern Southern Ocean, North Atlantic and North Pacific)
where export ratios follow the annual cycle in NPP (Fig.6c).
In the southern Southern Ocean, NPP and, consequently, ex-
port ratios, are very low in austral winter due to severe light
limitation despite the higher NPPdiat/NPPtot (Fig. 6e) caused
by a decrease in the relative abundance of picophytoplankton
due to picophytoplankton higher light requirements (lower
maximum Chl : N ratio).

The magnitude of the standard error of the estimates ofα,
λ, andf is inversely proportional to the goodness of fit of the
exponential model. Therefore, regions characterized by high
standard errors, such as the northern subtropical Atlantic, the
northern Indian Ocean and the west coast of the Americas,
denote areas where the fit of the exponential is not as good
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Fig. 4. CCSM–BEC annual mean export depth(a), annual net primary production (NPP)(b), POC flux at export depth(c) and 2000 m(d),
export ratio(e) and transfer efficiency(f). Export ratio(e) is defined as POC flux at export depth(c) divided by annual NPP(b). Transfer
efficiency(f) is defined as POC flux at 2000 m(d) divided by POC flux at export depth(c). Global integrals (NPP, POC flux at export depth
and 2000 m) and means (export depth, export ratio and transfer efficiency) are shown on the top right corner of the each panel. The solid
black lines in(a), (e)and(f) denote the contour for the global mean value.

(Fig. 5b, d, f). Globally, the coefficients of variation for all
three parameters are quite low (< 5 %) and given their con-
fidence intervals at each grid point, the spatial variations in
α, λ, andf shown in Fig.5a, c, e are statistically significant.
Nevertheless, analysis of the causes of the poorer fits can in-
form us about the factors or processes that control the POC
flux in those regions and contribute to the spatial variation in
α, λ andf . Figure7a–c shows individual POC flux profiles
from CCSM–BEC and the fitted exponential model at the lo-
cations marked in Fig.5. The profiles are located in regions
of high standard errors for all three parameters and the misfits
between the exponential model and CCSM–BEC are notice-
able. In the northern Subtropical Atlantic (Fig.7a), the low
(mostly regenerated) NPP (Fig.4b) and the high proportion
of dust (> 70 %) in the particulate sinking material (Fig.7e)
result in a combination of low export (f < 5 %) and slow
decay (α < 40 %,λ > 250 m) that the exponential model is
unable to fit well. On the west coast of South America and
Africa and in the Arabian Sea region (Fig.7b–d), the misfits
are caused by the lengthening of the POC remineralization
length scale between 300 and 700 m, due to low dissolved
O2 concentrations (O2 < 4 mmolm−3, Fig. 7f). In CCSM–
BEC, the remineralization length scale for POC is doubled

in regions where organic matter is oxidized through denitrifi-
cation (see Table7 in AppendixA1). The higherλ (> 250 m)
regions on the west coast of Africa and the Americas and in
the northern Indian Ocean (Fig.5c) are thus directly associ-
ated with oxygen minimum zones (OMZs) in CCSM–BEC.

The wide range of variation inα, λ andf (Figs.5 and8)
highlights the flexibility of CCSM–BEC’s vertical particle
flux model and its ability to simulate widely different POC
flux regimes. Globally, export ratios (f ) vary by an order of
magnitude (3–35 %) and POC remineralization length scales
(λ) vary by a factor of two (150–330 m). The largest vari-
ations in labile fraction (40%< α < 95 %) are confined to
the northern subtropical Atlantic and northern Indian Ocean
regions and are driven by an increase in the dust : POC ra-
tio of exported material (Fig.8j), caused by elevated at-
mospheric dust deposition. In parts of the North Atlantic
and the Indian sector of the northern Southern Ocean, la-
bile fraction also drops below 90 % as a result of an in-
crease in the CaCO3 : POC ratio of sinking material (Figs.5a
and 8q). In the remaining regions, there is still significant
variability in the lability of sinking POC, with the refrac-
tory fraction (1− α) varying by a factor of four (0.02–0.08,
Fig. 8a). The variation in remineralization length scale (λ)
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Fig. 5. Distribution of POC labile fraction (α), remineralization length scale (λ) and export ratio (f ) (a, c, e)and their standard errors(b, d,
f) obtained from fitting Eq. (1) to CCSM–BEC annual mean POC flux profiles and NPP at each model grid point. The colored circles mark
the location of the vertical profiles shown in Fig.7.

is largely controlled by water column temperature, ranging
from ≈ 200 m in colder high-latitude regions to a minimum
of ≈ 150 m in the warmest areas of the northern subtropical
Pacific and western equatorial Pacific (Fig.8b). This is ex-
pected as the temperature dependence of the POC remineral-
ization length scale is built into the CCSM–BEC model and
there is significant latitudinal variation in temperature in the
mesopelagic in CCSM, with temperatures at 590 m varying
from below−2◦C in polar regions to 9–14◦C in the sub-
tropical gyres (not shown). The largeλ values (> 250 m)
at high SSTs (Fig.8b) are associated with the OMZ re-
gions along the west coast of Africa and the Americas and
the northern Indian Ocean. In the northern subtropical At-
lantic,λ increases with the dust content in the exported ma-
terial (Fig.8k) and the highestλ values (> 200 m) are asso-
ciated with areas of low productivity and elevated dust de-
position (Figs.4b and5c). The combination of low labile
fraction (α < 50 %) and high remineralization length scale
(λ > 200 m) in the northern subtropical Atlantic, caused by
high dust : POC ratios in sinking detritus, produces the high-
est transfer efficiencies in CCSM–BEC (Fig.4f).

In CCSM–BEC, variability in export ratio is primarily
driven by ecosystem structure (diatom relative abundance)
and water column temperature (Fig.8d, h, Table2). This is
expected as CCSM–BEC is parameterized so that a larger

fraction of zooplankton grazing is routed to POC when zoo-
plankton feed on diatoms, and the POC remineralization
length scale decreases with increasing temperature (see Ap-
pendixA1). Multivariate linear regression analysis (Table2)
shows that, despite the apparent correlation between export
ratios and opal and dust export (Fig.8p, l), the opal and dust
content of exported material does not affect the export ratio
in CCSM–BEC (negligible differences inr2, Table2). The
negative regression coefficients between CaCO3 content of
exported material and export ratio evidently reflect the dom-
inance of diatoms in regions of high export ratio, and not
a “negative” ballast effect by CaCO3 (Table2). Removal of
CaCO3 content of exported material from the regression re-
sults in a relatively small decrease in the explained variance
(Table 2). Comparison of Fig.8p and Table2 also shows
that the apparent correlation between export ratio and the
opal : POC ratio in the export flux (r = 0.56, Fig.8p) is the
result of diatom dominance in regions of high export ratios,
and not evidence of a ballasting effect by opal.

3.4 Deep fluxes and transfer efficiency in CCSM-BEC

To look at the effects of ecosystem structure and composi-
tion of exported material on deep POC fluxes and transfer
efficiency in CCSM–BEC, we examine the relationship be-
tween POC flux at 2000 m(F 2000m

POC ) and transfer efficiency
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Fig. 6. Annual cycle of regional averages of estimated values ofα (a), λ (b), f (c), sea surface temperature(d), the ratio of vertically
integrated NPP by diatoms to total NPP(e), total NPP(f), and the ratio of dust(g), opal(h) and CaCO3 (i) flux to POC flux at export depth
(z0). Line colors correspond to the colors of the CCSM-BEC domain regions shown in Fig.1.

(
F 2000m

POC /F
z0
POC

)
with temperature, NPP, the relative contri-

bution of diatoms to total NPP, mineral ballast export, and the
ratios of mineral ballast export to POC export using stepwise
multivariate linear regression analysis (MLR). The analysis
is done using annual means of the different fields and thus fo-
cuses on spatial variation. The results of the stepwise MLR
for standardized POC flux at 2000 m from CCSM–BEC are
shown in Table3. In CCSM–BEC, the variation in POC flux
at 2000 m is well explained by the mineral ballast export
(r2 > 0.98). Opal export has the highest partial regression
coefficient and it alone explains over 50 % of the variability
in the POC flux at 2000 m. Removal of temperature and NPP
from the regression results in virtually no change in explana-
tory power. Thus, in CCSM–BEC, the magnitude of deep
POC flux is mainly controlled by the mineral ballast export
and is strongly influenced by opal export.

Similar analysis for the standardized transfer efficiency(
F 2000m

POC /F
z0
POC

)
against the standardized ratios of primary

production by diatoms to total primary production and of
dust, opal and CaCO3 flux to POC flux at the export depth
(Table4, upper part) shows that the dust content of the ex-
ported material has the strongest influence on transfer effi-
ciency in CCSM–BEC, explaining over 90 % of its variation.
However, strong atmospheric dust deposition is generally re-

stricted to the northern subtropical Atlantic and the northern
Indian Ocean. As seen in Sect.3.3, the strong dust signal in
these regions leads to lower labile fraction in the exported
material (Fig.8g) and high transfer efficiencies (Fig.4f) that
have a disproportionately large impact on the global multi-
variate linear regression above (Fig.9a). Therefore, to ac-
count for strong regional biases on the effects of dust on
transfer efficiency, we repeat the stepwise multivariate linear
regression analysis with those two regions removed (Fig.9e–
h, Table4 lower part). The variation in transfer efficiency is
well explained by the mineral content of the exported mate-
rial (r2 > 0.9), but dust is no longer the dominant factor (Ta-
ble 4). Removing temperature and/orNPPdiat

NPPtot
from the analy-

sis has a negligible effect on explanatory power, as they are
well correlated with each other (r = −0.65), and opal : POC
and CaCO3 : POC flux ratios combined explain over 90 % of
the variation in transfer efficiency (Table4). With the strong
regional dust signal removed, the CaCO3 : POC ratio in the
exported material becomes the most influential factor, ex-
plaining close to 40 % of the variation in transfer efficiency,
followed closely by opal : POC.

The results from the regression analyses show that the
spatial variation in deep POC flux and transfer efficiency
in CCSM–BEC is explained by changes in mineral ballast
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Table 2. Standard partial regression coefficients and coefficients of determination(r2) for stepwise multivariate linear regression of stan-
dardized(x∗

=
x−x̄
σx

) annual mean export ratio (f ∗) on standardized annual mean SST, and ratios of vertically integrated NPP by diatoms
to total NPP and of dust, opal and CaCO3 flux to POC flux at the export depth (z0). SST is used as a proxy for water column temperature.
p < 0.0000001 for all regression coefficients.

partial regression coefficients

ŷ
SST∗

(
NPPdiat
NPPtot

)∗

(
F

z0
opal

F
z0
POC

)∗ (
F

z0
CaCO3

F
z0
POC

)∗ (
F

z0
dust

F
z0
POC

)∗
r2

−0.307± 0.021 0.446± 0.029 −0.028± 0.020 −0.271± 0.021 −0.006± 0.015 0.68213
−0.309± 0.020 0.444± 0.029 −0.028± 0.020 −0.273± 0.020 0.68210

f ∗

−0.306± 0.020 0.427± 0.026 −0.272± 0.020 0.68172
−0.192± 0.019 0.668± 0.019 0.64433

Table 3. Standard partial regression coefficients and coefficients of determination(r2) for stepwise multivariate linear regression of stan-
dardized(x∗

=
x−x̄
σx

) POC flux at 2000 m(F2000m∗

POC ) on standardized mean water column temperature for the upper 2000 m(T ), vertically
integrated NPP, and mineral ballast fluxes at export depth (z0). p < 0.0000001 for all regression coefficients.

partial regression coefficients
ŷ

T
∗

NPP∗ F
z0∗

dust F
z0∗

CaCO3
F

z0∗

opal
r2

0.020± 0.004 0.049± 0.006 0.381± 0.003 0.446± 0.004 0.703± 0.005 0.987
0.068± 0.005 0.385± 0.003 0.441± 0.004 0.690± 0.004 0.987

F2000m∗

POC 0.383± 0.003 0.480± 0.003 0.717± 0.003 0.985
0.515± 0.006 0.665± 0.006 0.841

0.765± 0.009 0.586

Table 4. Standard partial regression coefficients and coefficients of determination(r2) for stepwise multivariate linear regression of stan-
dardized(x∗

=
x−x̄
σx

) transfer efficiency(F2000m
POC /Fz0

POC) on standardized mean water column temperature for the upper 2000 m(T), ratios
of vertically integrated NPP by diatoms to total NPP and of dust, opal and CaCO3 flux to POC flux at the export depth (z0). p < 0.0000001
for all regression coefficients. The upper part of the table shows the coefficients obtained including all model domain regions in the analysis.
The lower part of the table shows the coefficients obtained when the northern subtropical Atlantic and northern Indian Ocean regions are
removed from the analysis.

partial regression coefficients

ŷ
T∗

(
NPPdiat
NPPtot

)∗

(
F

z0
opal

F
z0
POC

)∗ (
F

z0
CaCO3

F
z0
POC

)∗ (
F

z0
dust

F
z0
POC

)∗
r2

0.034± 0.003 −0.005± 0.004 0.261± 0.003 0.288± 0.003 0.898± 0.002 0.995
0.032± 0.002 0.263± 0.003 0.286± 0.002 0.899± 0.002 0.995

−0.020± 0.002 0.254± 0.001 0.275± 0.001 0.903± 0.001 0.994
0.243± 0.002 0.283± 0.002 0.903± 0.002 0.994

0.173± 0.003 0.899± 0.003 0.947
0.960± 0.004 0.921(

F2000m
POC

F
z0
POC

)∗

0.095± 0.006 0.002± 0.009 0.888± 0.006 0.896± 0.006 0.239± 0.005 0.977
0.094± 0.005 0.888± 0.006 0.895± 0.005 0.240± 0.005 0.977

−0.076± 0.004 0.875± 0.003 0.854± 0.003 0.248± 0.003 0.974
0.832± 0.003 0.884± 0.003 0.242± 0.003 0.971
0.812± 0.004 0.970± 0.004 0.922

0.551± 0.012 0.177± 0.012 0.411
0.620± 0.011 0.385
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Fig. 7. (a–d)show vertical profiles of POC flux at the locations marked in Fig.5 where the errors for the exponential model are relatively
large compared to the rest of the global ocean. The solid lines represent the POC flux from CCSM–BEC, and the dashed lines show the
exponential fit (Eq.1). The estimated values ofα, λ andf and their 95 % confidence intervals are also shown for each location.(e) and
(f) show the mass flux (M) ratio (g m−2 d−1/g m−2 d−1) of sinking dust to total particulate sinking material and dissolved oxygen from
CCSM-BEC, respectively, at the same locations shown in(a–d). The color of the solid lines corresponds to the color of the circles marking
the location of the profiles in Fig.5.

export and their ratios to POC export, respectively. However,
while the absolute flux is strongly influenced by opal export,
transfer efficiency is mostly a function of dust and CaCO3
content of exported material. The reason for the weaker opal
control on transfer efficiency is that opal flux (diatom rel-
ative abundance) is well correlated with NPP (and absolute
fluxes) but the ballasting effect by opal is much weaker due to
its shorter remineralization length scale and strong tempera-
ture dependence. In addition, opal-rich regions are generally
characterized by strong seasonality in NPP (Fig.10b) and
thus high variability in transfer efficiency, while CaCO3 and
dust-rich areas tend to be more stable, with lower NPP and
higher mineral : POC ratios (Fig.10c), and the remineraliza-
tion length scales for dust and CaCO3 are significantly longer
than that for opal (Table7 in AppendixA1). Therefore, al-
though opal export explains most of the variation in absolute
POC fluxes at depth, CaCO3 and dust are better predictors
of transfer efficiency. In CCSM–BEC, ecosystem structure
(NPPdiat

NPPtot
) does not have a significant influence on transfer effi-

ciency. Nevertheless, the negative regression coefficients for
NPPdiat
NPPtot

in both regression analyses (Table4) indicate that, in
CCSM–BEC, transfer efficiency is inversely correlated with
the relative contribution of diatoms to total NPP. This is con-
sistent with the generally opposing spatial patterns of transfer
efficiency and export ratio seen in Fig.4, as ecosystem struc-

ture is the primary factor driving the variability in export ratio
(Sect.3.3).

4 Discussion

Estimates of global POC export range from 4 PgCyr−1

(Henson et al., 2011) to ≈ 21 PgCyr−1 (Laws et al.(2000)
using the model ofEppley and Peterson(1979)), with val-
ues clustering around either 5 PgCyr−1 (Moore et al., 2004;
Lutz et al., 2007; Honjo et al., 2008; Henson et al., 2011,
2012b) or 10 PgCyr−1 (Laws et al., 2000; Schlitzer, 2004;
Gehlen et al., 2006; Dunne et al., 2007; Laws et al., 2011)
(Table5). Similarly, global mean export ratio computations
vary around≈ 10 % and≈ 20 % (Table5). Part of the vari-
ation in global export estimates in Table5 is a result of dif-
ferent definitions of export depth. Most studies use a fixed
export depth of≈ 100 m or define export depth as the maxi-
mum of either the euphotic zone or mixed layer depths. Shal-
lower export depths result in higher export estimates and vice
versa. We expect the use of a fixed export depth of≈ 100 m
to produce lower global export estimates compared to stud-
ies using a spatially/temporally varying export depth due to
the higher magnitude of the underestimation bias in produc-
tive, higher latitude regions where the export depth is sig-
nificantly shallower than 100 m. CCSM–BEC’s estimates of
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Fig. 8. 1− α, α, λ andf obtained from fitting Eq. (1) to CCSM–BEC annual mean POC flux profiles and NPP plotted against annual
means of sea surface temperature (SST)(a–d), ratio of vertically integrated NPP by diatoms to total NPP(e–h)and the ratio of dust(i–l),
opal (m–p) and CaCO3 (q–t) flux to POC flux atz0 in CCSM–BEC. 1− α is plotted with the regions of high atmospheric dust deposition
(northern subtropical Atlantic and northern Indian Ocean) removed. Points are colored according to model domain region (Fig.1). In (d),
the solid black line shows the type II linear regression between SST and estimatedf values (correlation coefficientr = −0.61, slopeb =

−0.00427±9.07×10−5), and the dashed and dotted lines show thef ratio as function of SST relationships ofHenson et al.(2011) andLaws
et al.(2000), respectively.

global POC export (6.04 PgCyr−1) and export ratio (12.9 %)
are consistent with those in the first group. Different exper-
iments with CCSM–BEC using different types of forcing
produce global POC exports and export ratios in the range
5.5–6.3 PgCyr−1 and 11.5–12.9 %, respectively, which are
close to those obtained byMoore et al.(2004) with an earlier
version of CCSM–BEC. Global POC export estimates from
the parameterizations shown in Fig.3 vary between 2.23 and
7.73 PgCyr−1 (3.8 %≤ f ≤ 16.9 %) but most values are in
the 4–5.5 PgCyr−1 (6.7 %≤ f ≤ 10.8 %) range (Table6),
which also makes them consistent with CCSM–BEC and
other studies in the first group. The15N isotope-based global
export estimate ofLaws et al.(2000) (11.1 PgCyr−1, 21 %)
includes both DOC and POC, and is most likely an overesti-
mation, as it does not account for potentially large biases due

to significant levels of nitrification in the upper ocean (Yool
et al., 2007).

The studies shown in Table5 have their own sources of
bias and uncertainty, and many are based on algorithms de-
rived from or calibrated with sparse in situ data. It is clear
from the range of estimates that in situ observations do not
provide the necessary resolution to evaluate export estimates
by the different methods or constrain particle flux parameter-
izations, which can lead to significant differences in global
estimates (Gehlen et al.(2006), Table5). Extrapolating point
measurements (Fig.1) to compute global means or integrals
implies a fair amount of spatial and temporal homogeneity.
The impact of spatial variability on estimates of global export
and export ratios is evident in the comparison of the results
from the global and regional exponential models in Table6.
Using satellite NPP, the export and export ratio estimates
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Fig. 9. Transfer efficiency (ratio of POC flux at 2000 m to POC flux atz0) plotted against the ratio of dust(a, e), opal(b, f) and CaCO3 (c,
g) fluxes to POC flux at export depth (z0), and the ratio of vertically integrated NPP by diatoms to total NPP(d, h). In (e–h), the regions of
high atmospheric dust deposition (northern subtropical Atlantic and northern Indian Ocean) have been removed.

Fig. 10.Seasonal variation index for NPP(SVINPP) plotted against the ratios of(a) dust,(b) opal and(c) CaCO3 flux to POC flux at the
export depth(z0) from CCSM–BEC. SVINPP is defined as the coefficient of variation(SVINPP=

σNPP
NPP

) of a 12-month climatology of NPP
from CCSM-BEC.

from the regional exponential model are more than double
those of the global model. Compounding the problem are the
relatively large uncertainties associated with sediment trap
data, particularly from shallow traps (< 1000 m).

While there is some agreement regarding estimates of
global export and mean export ratios, there are few inde-
pendent estimates of global transfer efficiency (Table5), de-
fined here as as the ratio of POC flux at 2000 m to ex-
port flux. The transfer efficiency obtained from theMartin

et al. (1987) power law(F = Fz0

(
z
z0

)b

) with z0 = 110.4 m

(CCSM–BEC global mean) andb = −0.858 (8.3 %), is in
good agreement with the sediment trap based estimate of
Honjo et al. (2008) (7.6 %). However, this is not surpris-
ing, as Honjo et al. (2008) used the Martin curve (with
b = −0.858) to normalize the POC fluxes to 2000 m and
compute transfer efficiencies. Using theLutz et al. (2007)
model in combination with an export algorithm calibrated
with sediment trap data and satellite derived NPP,Henson
et al. (2012b) estimates mean global transfer efficiency as

19 % (Table5). The global area-weighted mean transfer ef-
ficiency in CCSM–BEC (5.5 %) is significantly lower than
those fromHenson et al.(2012b), and the parameterizations
shown in Fig.3, which range between 22.8 and 38.3 % (Ta-
ble 6). The difference can be attributed to differences in for-
mulation as well as the difference in complexity between
CCSM-BEC’s vertical particle flux parameterization and that
of the other models. As we saw in Sect.3.3, CCSM–BEC’s
complexity translates into a wide range of variation in la-
bile fraction, remineralization length scales and export ratios
(Figs.5a, c, e and8) that allow it to simulate widely differ-
ent POC flux regimes. By contrast, the simpler parameteri-
zations in the regional exponential and Lutz models have a
more uniform parameter space, resulting in more spatially
homogeneous POC flux profiles and transfer efficiency fields
and thus significantly different global estimates. The four pa-
rameterizations of the exponential model (global, regional,
satellite, and CCSM-BEC NPP) also tend to underestimate
shallow fluxes and overestimate deep fluxes (Fig.3b–h),
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Table 5. Global annual export and global mean export ratios and
transfer efficiencies from other studies in the literature. The trans-
fer efficiency for Martin et al. (1987) was estimated using an
export depth equal to the global mean for CCSM–BEC(Teff =

100
(

2000
110.4

)−0.858
). The Laws et al.(2000) estimate is for total

export (POC+ DOC). The export ratios (f ) between parentheses
were estimated from global POC exports assuming global NPP of
51 Pg C yr−1 (Carr et al., 2006).

study export f Teff
(Pg C yr−1) (%) (%)

Laws et al.(2000) 11.1 21
Laws et al.(2011) 9.23–13.24 19.1–27.5
Schlitzer(2004) 9.6 (18.8)
Gehlen et al.(2006) 5–10 13.5–28.6
Dunne et al.(2007) 9.6 (18.8)
Eppley and Peterson(1979) 4.7 20
Moore et al.(2004) 5.8 8.3
Lutz et al.(2007) 4.6 (9)
Honjo et al.(2008) 5.7 16.3 7.6
Henson et al.(2011, 2012b) 4 10 19
Martin et al.(1987) 8.3

compared to CCSM–BEC (Sect.3.1). These biases lead to an
overestimation of transfer efficiency that is consistent with
the results shown in Table6. The difference in transfer ef-
ficiency between CCSM–BEC and the simpler models also
highlights the effect of spatial variability on global budgets.
As the number and range of estimates in Table5 shows, es-
timates of transfer efficiency in the ocean remain largely un-
constrained despite significant efforts by observational scien-
tists.

Although CCSM-BEC’s particle flux model is fundamen-
tally based on the ballast hypothesis (Armstrong et al., 2002),
the vertical flux of POC to depth in CCSM–BEC is the result
of the interaction of mineral ballast effects, environmental
and biogeochemical factors, and ecosystem dynamics. The
temperature dependence of the POC remineralization length
scale is modulated by denitrification under low O2 concen-
trations and lithogenic (dust) fluxes. Export ratio is governed
by diatom relative abundance while degradability of exported
material is mainly influenced by dust and CaCO3 content.
Transfer efficiency in the model is primarily controlled by
dust and CaCO3, and, to a lesser extent, opal content of the
exported material. The relative importance of the different
ballast minerals in controlling transfer efficiency is the result
of their respective remineralization length scales and their
local supply or production in relation to local NPP. Thus,
oligotrophic regions with high calcification and/or dust de-
position (longer length scale) will have higher transfer ef-
ficiency than productive, opal-rich (shorter length scale) re-
gions. Ecosystem structure does not affect transfer efficiency
directly, but its indirect effect is evident in the inverse cor-
relation between diatom relative abundance and transfer effi-

ciency (Table4) and the generally opposing spatial patterns
of export ratio and transfer efficiency (Fig.4e, f). A simi-
lar relationship between ecosystem structure (diatom relative
abundance), export ratio and transfer efficiency was found
by François et al.(2002) andHenson et al.(2012b). François
et al.(2002), analyzing data from deep (> 2000 m) sediment
traps, found that transfer efficiency is primarily driven by the
CaCO3 content of sinking particles, and attributed the ab-
sence of a ballasting effect by opal to an ecosystem or “pack-
aging” effect that changes the lability of sinking particles
and counteracts the ballasting effect of opal.Henson et al.
(2012b), on the other hand, concluded, based on satellite-
derived algorithms calibrated with sediment trap data, that
transfer efficiency is mainly driven by community structure
(inversely correlated with diatom relative abundance). Com-
parison of our results withFrançois et al.(2002) andHen-
son et al.(2012b) shows that although the three studies show
similar relationships between ecosystem structure and trans-
fer efficiency, different methodologies, assumptions and ap-
proximations can produce significantly different correlations
between specific factors. In addition, many of the factors are
not truly independent; biomineral ballast composition is in-
extricably linked to community structure (see Sect.3.3, Ta-
ble2), and an effect akin to ecosystem control of transfer ef-
ficiency can be achieved with a ballast-based model. There-
fore, it is difficult to differentiate between ecosystem (com-
munity structure) and ballast control of transfer efficiency.
Dust is distinct from CaCO3 and opal in that it does not have
a biological source, and therefore its ballasting effects should
be more easily distinguishable from community structure ef-
fects.

Lithogenic material is an important control of transfer ef-
ficiency in CCSM–BEC.Dunne et al.(2007), using a com-
bination of algorithms that connect satellite-estimated NPP
to particulate fluxes through the water column to the sedi-
ments, also concluded that lithogenic material plays an im-
portant role in the transport of POC to the deep ocean, par-
ticularly in low-productivity areas, accounting for close to
50 % of the total POC flux to the sea floor. In the northern
subtropical Atlantic, the combination of elevated dust depo-
sition and low NPP produces high dust : POC ratios which
in turn result in low labile fraction and long remineralization
length scale and the highest transfer efficiencies in CCSM–
BEC (Fig.4f). Klaas and Archer(2002) also found that the
magnitude of the POC flux to deep (> 3000 m) sediment
traps is mainly a function of the CaCO3 and lithogenic con-
tent of the sinking particles.François et al.(2002), analyzing
a different subset of the same data, concluded that lithogenic
material does not have a significant effect on transfer effi-
ciency. However, their conclusion is based on data from 68
sediment traps, few of which are located in regions of strong
lithogenic influence (northern subtropical Atlantic). Our re-
sults, on the other hand, are from a model but cover a wide
range of environments and flux regimes. The effect of dust on
transfer efficiency in CCSM–BEC has a strong regional bias
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Table 6. Global annual POC export and area-weighted global mean export ratios(f = F
z0
POC/NPP× 100) and transfer efficiencies(Teff =

F2000m
POC /F

z0
POC× 100) for the eight POC flux models shown in Fig.3. The 95 % confidence interval for the global export estimates from the

different models were computed using the bootstrap method with 10 000 samples drawn randomly with replacement.

model input NPP spatial variation (lon× lat) export (Pg C yr−1) f (%) Teff (%)

CCSM-BEC – 3.6◦ × 0.8–1.8◦ 6.04± 0.12 12.9 5.5
Lutz satellite 1◦ × 1◦ 4.17± 0.06 6.7 34.4
Lutz null satellite None 4.27± 0.05 7.3 38.3
exponential global satellite None 2.23± 0.03 3.8 23.4
exponential regional satellite CCSM–BEC regions (Fig.1) 5.32± 0.09 8.6 22.8
Lutz CCSM–BEC 3.6◦ × 0.8–1.8◦ 4.33± 0.08 10.8 31.3
exponential global CCSM–BEC None 4.78± 0.06 9.7 29.2
exponential regional CCSM–BEC CCSM–BEC regions (Fig.1) 7.73± 0.25 16.7 25.4

(northern subtropical Atlantic, northern Indian Ocean) and
may be overestimated to some extent. The model’s lithogenic
coefficients are the least well constrained and at the upper
end of the estimate fromKlaas and Archer(2002). Another
factor is that, in the current POC flux parameterization, the
fraction of dust-associated POC is proportional to the vertical
dust flux (Eqs.A5 andA14) and is given by the POC / dust
mass ratio for particulate matter (ωdust, Table 7). This pa-
rameter does not depend on NPP and is held constant in the
model. Thus, in regions of strong atmospheric dust deposi-
tion and low NPP, such as the northern subtropical Atlantic,
this parameterization could lead to unrealistically high frac-
tions of POC associated with dust and an overestimation of
transfer efficiency. This is a potential weakness in the model,
but we currently do not have the observational data to test it.
In the regions of low dust input, transfer efficiency is mainly
affected by CaCO3 content of sinking material; this result is
consistent with previous studies (François et al., 2002; Klaas
and Archer, 2002; Dunne et al., 2007).

The sparseness of sediment-trap data (Fig.1) and the rel-
atively large uncertainties associated with those observations
make it difficult to constrain and evaluate POC flux to depth
estimates from numerical models and satellite-based parame-
terizations. As a result, significantly different models and pa-
rameterizations show relatively similar skills when compared
with observations (Fig.3). CCSM–BEC’s skill at reproduc-
ing POC flux estimates at sediment trap locations is equal
to or better than that of other parameterizations. However,
using CCSM–BEC NPP in the Lutz and exponential mod-
els results in a significant decrease in correlation between
model estimates and observations (Fig.3). Errors and biases
in CCSM–BEC’s NPP do not necessarily translate into lower
skill for CCSM–BEC because of the complexity of CCSM–
BEC’s vertical particle flux model. The vertical POC flux in
CCSM–BEC is a function of many different factors in ad-
dition to NPP: environment, biogeochemical processes, min-
eral ballast, and ecosystem structure. This results in a discon-
nect and low correlation (r = 0.16) between POC flux and
NPP at sediment trap locations. In the simpler parameteriza-

tions of Lutz and the exponential models, POC flux is a more
direct function of NPP (exponential decay of a fraction of
NPP), and NPP and POC flux are more strongly correlated.
Therefore, errors and biases in CCSM–BEC’s NPP have a
proportionally larger effect on POC flux estimates in these
models.

In CCSM–BEC, transfer efficiency is mainly controlled by
mineral ballast (dust and CaCO3) through changes in labile
fraction (α) and remineralization length scale (λ) of sink-
ing POC. This effect is most pronounced in oligotrophic
regions, where mineral : POC ratios are relatively high. In
the northern and southern subtropical Atlantic gyres, in par-
ticular, strong atmospheric dust deposition in combination
with low NPP produces the highest transfer efficiencies in
CCSM–BEC (> 10 %). However, the virtual absence of sed-
iment trap measurements in these regions (or other olig-
otrophic gyres, Fig.1) makes it difficult to evaluate these
model results against observations. Model POC remineral-
ization length scale is further modulated by temperature and
O2 concentrations. More observations in OMZ regions would
be of great value in quantifying and constraining the effect
of low O2 concentrations on POC remineralization length
scales. Export ratio in CCSM–BEC is mainly a function of
phytoplankton community structure and temperature. The
available sediment flux data, however, tend to be from sites
located in productive areas (high-latitude, frontal and up-
welling regions or near continental margins, Fig.1), and
therefore do not provide much contrast between ecological
regimes; this makes it more difficult to evaluate the role of
ecosystem structure on export ratios and transfer efficiency.
To thoroughly evaluate and test model results and better un-
derstand the processes controlling POC flux to depth in the
ocean, it is necessary to gather more observations in a wider
range of ecological regimes, including oligotrophic gyres,
OMZ regions, and areas under strong lithogenic influence.
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Table 7.Equation parameters’ definitions and values.

Parameter Value Units Definition

Tref 30 ◦C reference temperature
q10 2 temperature-dependence factor
SiO3q10 4 temperature-dependence factor for particulate SiO3 remin
POCq10 1.12 temperature-dependence factor for POC remin
msp 0.1 d−1 small phyto. linear mortality rate
mdiat 0.1 d−1 diatom linear mortality rate
psp 0.009 (mmolC)−1m3d−1 small phyto. quadratic mortality rate
pdiat 0.009 (mmolC)−1m3d−1 diatom quadratic mortality rate
mdiaz 0.16 d−1 diazotrophs linear mortality rate
ePOC
sp 0.22 (mmolC)−1 small phyto. grazing factor

amax
sp 0.2 d−1 max aggregation rate for small phyto

amax
diat 0.2 d−1 max aggregation rate for diatoms

amin
diat 0.01 d−1 min aggregation rate for diatoms

u
sp
max 2.75 d−1 max zoo. growth rate on small phyto. atTref

udiat
max 2.07 d−1 max zoo. growth rate on diatoms atTref

udiaz
max 1.2 d−1 max zoo. growth rate on diazotrophs atTref

mz 0.1 d−1 zoo. linear mortality rate
pz 0.45 (mmolC)−1m3d−1 zoo. quadratic mortality rate
g 1.05 mmolCm−3 zoo. grazing coefficient
f diat
z 0.81 scaling factor for grazing on diatoms

f
diat, POC
graz 0.26 fraction of diatom grazing routed to POC

f POC
diat loss 0.05 fraction of diatom loss routed to POC

f
diaz, Z
graz 0.21 fraction of diazotrophs grazing routed to zoo

f
diaz, POC
graz 0.0 fraction of diazotrophs grazing routed to POC

f
sp, POC
zloss 0.06666 fraction of zoo. losses routed to POC when eating small phyto.

f
diat, POC
zloss 0.1333 fraction of zoo. losses routed to POC when eating diatoms

f
diaz, POC
zloss 0.03333 fraction of zoo. losses routed to POC when eating diazotrophs

f
CaCO3,POC
graz 0.4 min. proportionality betweenQCaCO3

sp and grazing losses to POC

f
sp, POC
graz 0.24 upper limit on fraction of grazing on small phyto. routed to POC

f
CaCO3, remin
graz 0.33 fraction of SPCaCO3 grazing that is remineralized

MPOC 12.01 gmol−1 POC molar mass
MCaCO3 100.09 gmol−1 CaCO3 molar mass
MSiO3 60.08 gmol−1 SiO3 molar mass
MFe 55.847 gmol−1 Fe molar mass
ωPCaCO3 0.07 gPOC(gCaCO3)−1 associated POC/CaCO3 mass ratio for particulate matter
ωPSiO3 0.035 gPOC(gPSiO3)−1 associated POC/SiO3 mass ratio for particulate matter
ωdust 0.07 gPOC(gdust)−1 associated POC/dust mass ratio for particulate matter
λPOC 130 (260)∗ m remineralization length scale for soft POC (if [O2] < 4 mmol m−3)∗

λCaCO3 600 m remineralization length scale for soft particulate CaCO3
λSiO3 22 m remineralization length scale for soft particulate SiO3
λdust 600 m remineralization length scale for soft dust
λhard 4× 104 m remineralization length scale for all hard particulate subclasses
f hard
PCaCO3

0.55 fraction of particulate CaCO3 production routed to the hard subclass

f hard
PSiO3

0.37 fraction of particulate SiO3 production routed to the hard subclass

f hard
dust 0.97 fraction of surface dust flux routed to the hard subclass

f bio
dust 0.02 fraction of surface iron dust flux that is bioavailable
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5 Summary and conclusions

CCSM–BEC’s particle flux model is fundamentally based on
the ballast hypothesis, but the vertical flux of POC to depth in
CCSM–BEC is the result of the interaction of many different
processes including: mineral ballast effects, environmental
and biogeochemical factors, and ecosystem dynamics. The
POC remineralization length scale’s dependence on temper-
ature is modulated by denitrification under low O2 concentra-
tions and lithogenic (dust) fluxes. Export ratios are mainly a
function of diatom relative abundance and temperature, while
transfer efficiency is driven primarily by dust and CaCO3,
and, to a lesser extent, the opal content of the exported mate-
rial. The close link between mineral ballast composition and
plankton community structure results in correlations between
export ratios and ballast mineral fluxes (opal and CaCO3),
and transfer efficiency and diatom relative abundance that do
not necessarily reflect ballast or direct ecosystem effects, re-
spectively. This suggests that differentiating between ecosys-
tem and ballast effects might be difficult in observations.
CCSM–BEC’s skill at reproducing sediment trap observa-
tions is equal to or better than that of other parameterizations.
However, the sparseness and relatively large uncertainties of
sediment trap data makes it difficult to accurately evaluate
model skill. More POC flux observations, over a wider range
of ecological regimes, are necessary in order to thoroughly
evaluate and test model results and better understand the pro-
cesses controlling POC flux to depth in the ocean.

Appendix A

A1 Vertical particle flux equations

Production of particulate organic carbon (POC), CaCO3 and
opal are given by

POCprod
= SPagg+ GPOC

sp + SPPOC
loss + DiatPOC

loss (A1)

+ Diatagg+ GPOC
diat + GPOC

diaz + ZPOC
loss

PCaCO3
prod

=

((
1− f CaCO3, remin

graz

)
Gsp+ SPloss (A2)

+SPagg
)
QCaCO3

sp

PSiO3
prod

=

((
1− f Si, remin

graz

)
Gdiat+ Diatagg (A3)

+f POC
diat lossDiatloss

)
QSi

diat

whereQ
CaCO3
sp andQSi

diat are the CaCO3 : C and Si : C ratios
for small phytoplankton and diatoms, respectively, theGPOC

X

terms represent the fraction of zooplankton grazing (GX) on
each phytoplankton group(X = {sp, diat, diaz}) that is di-
rected to POC, the termXPOC

loss represent the fraction of lin-
ear mortality (Xloss) for each phytoplankton functional group
(X = {sp,diat}) that is directed to POC,ZPOC

loss represents the
fraction of zooplankton total mortality (Zloss) that is directed

to POC, and the termsXagg represent the quadratic mor-
tality, or “aggregation”, for each phytoplankton functional
group(X = {sp, diat}). The expression for each of the terms
in Eqs. (A1)–(A3) is shown below and the definitions and
values for the parameters in those expressions are presented
in Table7:

Gsp = u
sp
maxTf

(
SP2

C
SP2

C+g2

)
ZC;

GPOC
sp = Gsp× MAX

(
f

CaCO3,POC
graz Q

CaCO3
sp ,

MIN
(
ePOC

sp SPC, f
sp, POC
graz

))
;

Gdiat = udiat
maxTf

(
Diat2C

Diat2C+g2f diat
z

)
ZC;

GPOC
diat = f

diat, POC
graz Gdiat;

Gdiaz = udiaz
maxTf

(
Diaz2

C
Diaz2

C+g2

)
ZC;

GPOC
diaz = f

diaz, POC
graz Gdiaz

SPloss = mspSPC;

SPPOC
loss = Q

CaCO3
sp SPloss;

Diatloss = mdiatDiatC;

DiatPOC
loss = f POC

diat lossDiatloss;

Zloss = Tf

(
mz ZC + pz Z2

C

)
;

ZPOC
loss =

f
sp, POC
zloss Gsp+f

diat, POC
zloss Gdiat+f

diaz, POC
zloss Gdiaz

Gsp+Gdiat+Gdiaz
Zloss

SPagg = MIN(amax
sp SPC, pspSP2

C);

Diatagg = MIN(amax
diat DiatC, pdiat Diat2C).

Tf is the temperature-dependency function for the ecosys-

tem model and is defined asTf = q
T −Tref

10
10 , and SPC,

DiatC, DiazC and ZC represent small phytoplankton, di-
atom, diazotrophs and zooplankton carbon concentrations
(mmolCm−3), respectively.

POC is partitioned between free and mineral-associated
fractions according to the POC / mineral mass ratio for par-
ticulate matter (ωx) for each mineral (Table7), following:

nonfreePOCprod
= ωPCaCO3

MCaCO3

MPOC
PCaCO3

prod (A4)

+ ωPSiO3

MSiO3

MPOC
PSiO3

prod

+ ωdust
dustflux(z)

dz
,

freePOCprod
= POCprod

−
nonfreePOCprod, (A5)

The fraction of mineral-associated POC that is routed to
the hard subclass is determined by the parameterf hard

x for
each mineral (Table7) and the vertical fluxes of the soft
and hard fractions of particulate CaCO3 (PCaCO3), biogenic
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opal (PSiO3) and dust are given by the following.

softPCaCO3
flux(z) =

soft PCaCOflux
3 z0

e
−

(z−z0)

λPCaCO3 (A6)

+

(
1− f hard

PCaCO3

) z∫
z0

PCaCO3
prode

−
(z−z0)

λPCaCO3 dz

hardPCaCO3
flux(z) =

hardPCaCOflux
3 z0

e
−

(z−z0)

λhard (A7)

+ f hard
PCaCO3

z∫
z0

PCaCO3
proddz

softPSiO3
flux(z) =

soft PSiOflux
3 z0

e
−

(z−z0)

λPSiO3
T

SiO3
f (A8)

+

(
1− f hard

PSiO3

) z∫
z0

PSiO3
prode

−
(z−z0)

λPSiO3
T

SiO3
f dz

hardPSiO3
flux(z) =

hardPSiOflux
3 z0

e
−

(z−z0)

λhard (A9)

+ f hard
PSiO3

z∫
z0

PSiO3
proddz

softdustflux(z) =

(
1−f hard

dust

) (
1−f bio

dust

)
dustflux

z0
e
−

(z−z0)

λdust (A10)

harddustflux(z) = f hard
dust

(
1− f bio

dust

)
dustflux

z0
e
−

(z−z0)

λhard (A11)

The vertical fluxes of free, associated, and total POC at depth
(z) are given by the following.

freePOCflux(z) =
freePOCflux

z0
e
−

(z−z0)

λPOC
T POC

f (A12)

+

z∫
z0

freePOCprode
−

(z−z0)

λPOC
T POC

f dz

nonfreePOCflux(z) (A13)

= ωPCaCO3

MCaCO3

MPOC

(
softPCaCO3

flux(z) +
hardPCaCO3

flux(z)
)

+ωPSiO3

MSiO3

MPOC

(
softPSiO3

flux(z) +
hardPSiO3

flux(z)
)

+ωdust
1

MPOC

(
softdustflux(z) +

harddustflux(z)
)

POCflux(z) =
free POCflux(z) +

nonfreePOCflux(z) (A14)

The temperature dependency functions for opal (SiO3) and
POC are defined as

T
SiO3
f =

SiO3q
T −Tref

10
10 (A15)

T POC
f =

POCq
T −Tref

10
10 , (A16)

Remineralization is computed from conservation.

PCaCO3
remin(z) = PCaCO3

prod(z) (A17)

+
d
(
softPCaCO3

flux(z)
)

dz

+
d
(
hardPCaCO3

flux(z)
)

dz

PSiO3
remin(z) = PSiO3

prod(z) (A18)

+
d
(
softPSiO3

flux(z)
)

dz

+
d
(
hardPSiO3

flux(z)
)

dz

POCremin(z) = POCprod(z) (A19)

+
d
(
freePOCflux(z)

)
dz

+
d
(
nonfreePOCflux(z)

)
dz

dustremin(z) =
d
(
softdustflux(z)

)
dz

(A20)

+
d
(
harddustflux(z)

)
dz

The parameter definitions and values for Eqs. (A1)–(A20)
are shown in Table7.

A2 Exponential model

POC flux(F ) is assumed to decay exponentially with depth
(z), following

F(z) = F(z0)e
−

1
λ
(z−z0), (A21)

whereF(z0) is the POC flux at export depthz0 (export flux)
andλ is the remineralization length scale. Assuming labile
(αl) and refractory (αr) fractions, Eq. (A21) becomes

F(z) = F(z0)

(
αle

−
1
λl

(z−z0)
+ αre

−
1
λr

(z−z0)

)
. (A22)

For largeλr values, 1
λr

→ 0 and Eq. (A22) becomes

F(z) = F(z0)

(
αle

−
1
λl

(z−z0)
+ αr

)
. (A23)

From Eq. (A23) atz = z0, we have thatαr = 1−αl . Defining
export fluxF(z0) as a fraction (f ) of vertically integrated
net primary production (NPP) and dropping the subscripts
(α = αl , λ = λl), Eq. (A23) is rewritten as

F(z) = f NPP
(
αe−

1
λ
(z−z0) + (1− α)

)
. (A24)

Biogeosciences, 11, 1177–1198, 2014 www.biogeosciences.net/11/1177/2014/



I. Lima et al.: Dynamics of particulate organic carbon flux in a global ocean model 1197

Acknowledgements.We thank Michael Lutz for making his
climatology of sediment trap observations available. Support for
this work was provided by WHOI Ocean and Climate Change
Institute and NSF grants OCE-0960880 and AGS-1048827.

Edited by: G. Herndl

References

Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused
the glacial/interglacial atmosphericpCO2 cycles?, Rev. Geo-
phys., 38, 159–189, 2000.

Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham,
S. G.: A new, mechanistic model for organic carbon fluxes in the
ocean based on the quantitative association of POC with ballast
minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-
rived from satellite-based chlorophyll concentration, Limnol.
Oceanogr., 42, 1–20, 1997.

Boyd, P. and Newton, P.: Does planktonic community structure
determine downward particulate organic carbon flux in dif-
ferent oceanic provinces?, Deep-Sea Res. Pt. I, 46, 63–91,
doi:10.1016/S0967-0637(98)00066-1, 1999.

Boyd, P. W. and Trull, T. W.: Understanding the export of bio-
genic particles in oceanic waters: Is there consensus?, Progr.
Oceanogr., 72, 276–312, 2007.

Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that
control particle export and flux attenuation in the twilight zone
of the open ocean, Limnol. Oceanogr., 54, 1210–1232, 2009.

Carr, M.-E., Friedrichs, M. A., Schmeltz, M., Noguchi Aita, M.,
Antoine, D., Arrigo, K. R., Asanuma, I., Aumont, O., Barber,
R., Behrenfeld, M., Bidigare, R., Buitenhuis, E. T., Campbell,
J., Ciotti, A., Dierssen, H., Dowell, M., Dunne, J., Esaias, W.,
Gentili, B., Gregg, W., Groom, S., Hoepffner, N., Ishizaka, J.,
Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F.,
Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth,
T., Turpie, K., Tilstone, G., Waters, K., and Yamanaka, Y.: A
comparison of global estimates of marine primary production
from ocean color, Deep-Sea Res. Pt. II, 53, 741–770, 2006.

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B.,
Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack,
J. J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna,
D. S., Santer, B. D., and Smith, R. D.: The Community Climate
System Model Version 3 (CCSM3), J. Climate, 19, 2122–2143,
2006.

Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural Variabil-
ity in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle
Simulation, J. Climate, 19, 3033–3054, 2006.

Doney, S. C., Yeager, S., Danabasoglu, G., Large, W. G., and
McWilliams, J. C.: Mechanisms Governing Interannual Variabil-
ity of Upper-Ocean Temperature in a Global Ocean Hindcast
Simulation, J. Phys. Oceanogr., 37, 1918–1938, 2007.

Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K.,
Mahowald, N., Moore, J. K., and Wanninkhof, R.: Mechanisms
governing interannual variability in upper-ocean inorganic car-
bon system and air–sea CO2 fluxes: Physical climate and atmo-
spheric dust, Deep-Sea Res. Pt. II, 56, 640–655, 2009a.

Doney, S. C., Lima, I., Moore, J. K., Lindsay, K., Behrenfeld, M. J.,
Westberry, T. K., Mahowald, N., Glover, D. M., and Takahashi,

T.: Skill metrics for confronting global upper ocean ecosystem-
biogeochemistry models against field and remote sensing data, J.
Mar. Syst., 76, 95–112, 2009b.

Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of
global particle export from the surface ocean and cycling through
the ocean interior and on the seafloor, Global Biogeochem. Cy.,
21, doi:10.1029/2006GB002907, 2007.

Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux
and planktonic new production in the deep ocean, Nature, 282,
677–680, 1979.

François, R., Honjo, S., Krishfield, R., and Manganini, S.: Fac-
tors controlling the flux of organic carbon to the bathy-
pelagic zone of the ocean, Global Biogeochem. Cy., 16, 1087,
doi:10.1029/2001GB001722, 2002.

Gehlen, M., Bopp, L., Emprin, N., Aumont, O., Heinze, C., and
Ragueneau, O.: Reconciling surface ocean productivity, export
fluxes and sediment composition in a global biogeochemical
ocean model, Biogeosciences, 3, 521–537, doi:10.5194/bg-3-
521-2006, 2006.

Gent, P. R. and McWilliams, J. C.: Isopycnal Mixing in Ocean Cir-
culation Models, J. Phys. Oceanogr., 20, 150–155, 1990.

Guidi, L., Stemmann, L., Jackson, G. A., Ibanez, F., Claustre, H.,
Legendre, L., Picheral, M., and Gorsky, G.: Effects of phyto-
plankton community on production, size, and export of large ag-
gregates: A world-ocean analysis, Limnol. Oceanogr., 54, 1951–
1963, 2009.

Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Le Moigne,
F., and Quartly, G. D.: A reduced estimate of the strength of
the ocean’s biological carbon pump, Geophys. Res. Lett., 38,
L04606, doi:10.1029/2011GL046735, 2011.

Henson, S., Smyth, R. L., Durkin, C. A., Li, J., Slemmons, K. E. H.,
and La Nafie, Y. A.: Variability in phytoplankton community
structure in response to the North Atlantic Oscillation and im-
plications for organic carbon flux, Limnol. Oceanogr., 57, 1602–
1618, 2012a.

Henson, S. A., Sanders, R., and Madsen, E.: Global pat-
terns in efficiency of particulate organic carbon export and
transfer to the deep ocean, Global Biogeochem. Cy., 26,
doi:10.1029/2011GB004099, 2012b.

Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.: Par-
ticulate organic carbon fluxes to the ocean interior and factors
controlling the biological pump: a synthesis of global sediment
trap programs since 1983, Progr. Oceanogr., 76, 217–285, 2008.

Klaas, C. and Archer, D. E.: Association of sinking organic mat-
ter with various types of mineral ballast in the deep sea: Im-
plications for the rain ratio, Global Biogeochem. Cy., 16, 1116,
doi:10.1029/2001GB001765, 2002.

Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic ocean
biological pump: Insights from a global compilation of partic-
ulate organic carbon, CaCO3, and opal concentration profiles
from the mesopelagic, Global Biogeochem. Cy., 25, GB3009,
doi:10.1029/2010GB003868, 2011.

Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical
mixing: A review and a model with a nonlocal boundary layer
parameterization, Rev. Geophys., 32, 363–403, 1994.

Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and Mc-
Carthy, J. J.: Temperature effects on export production in the
open ocean, Global Biogeochem. Cy., 14, 1231–1246, 2000.

www.biogeosciences.net/11/1177/2014/ Biogeosciences, 11, 1177–1198, 2014

http://dx.doi.org/10.1016/S0967-0637(98)00066-1
http://dx.doi.org/10.1029/2006GB002907
http://dx.doi.org/10.1029/2001GB001722
http://dx.doi.org/10.5194/bg-3-521-2006
http://dx.doi.org/10.5194/bg-3-521-2006
http://dx.doi.org/10.1029/2011GL046735
http://dx.doi.org/10.1029/2011GB004099
http://dx.doi.org/10.1029/2001GB001765
http://dx.doi.org/10.1029/2010GB003868


1198 I. Lima et al.: Dynamics of particulate organic carbon flux in a global ocean model

Laws, E. A., D’Sa, E., and Naik, P.: Simple equations to esti-
mate ratios of new or export production to total production
from satellite-derived estimates of sea surface temperature and
primary production, Limnol. Oceanogr.-Methods, 9, 593—601,
2011.

Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J.:
Seasonal rhythms of net primary production and particulate or-
ganic carbon flux to depth describe the efficiency of biologi-
cal pump in the global ocean, J. Geophys. Res., 112, C10011,
doi:10.1029/2006JC003706, 2007.

Mahowald, N., Luo, C., del Corral, J., and Zender, C. S.: Interannual
variability in atmospheric mineral aerosols from a 22-year model
simulation and observational data, J. Geophys. Res.-Atmos., 108,
doi:10.1029/2002JD002821, 2003.

Marshall, J., Ferrari, R., Forget, G., Maze, G., Andersson, A., Bates,
N., Dewar, W., Doney, S., Fratantoni, D., Joyce, T., Straneo, F.,
Toole, J., Weller, R., Edson, J., Gregg, M., Kelly, K., Lozier, S.,
Palter, J., Lumpkin, R., Samelson, R., Skyllingstad, E., Silver-
thorne, K., Talley, L., and Thomas, L.: The Climode Field Cam-
paign: Observing the Cycle of Convection and Restratification
over the Gulf Stream, B. Am. Meteorol. Soc., 90, 1337–1350,
2009.

Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.:
VERTEX: carbon cycling in the northeast Pacific, Deep-Sea
Res., 34, 267–285, 1987.

Moore, J. K. and Doney, S. C.: Iron availability limits the ocean
nitrogen inventory stabilizing feedbacks between marine deni-
trification and nitrogen fixation, Global Biogeochem. Cy., 21,
doi:10.1029/2006GB002762, 2007.

Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem
dynamics and iron cycling in a global three-dimensional model,
Global Biogeochem. Cy., 18, doi:10.1029/2004GB002220,
2004.

Najjar, R. G. and Keeling, R. F.: Analysis of the mean annual cycle
of the dissolved oxygen anomaly in the World Ocean, J. Mar.
Res., 55, 117–151, doi:10.1357/0022240973224481, 1997.

Najjar, R. G., Jin, X., Louanchi, F., Aumont, O., Caldeira, K.,
Doney, S. C., Dutay, J.-C., Follows, M., Gruber, N., Joos, F.,
Lindsay, K., Maier-Reimer, E., Matear, R. J., Matsumoto, K.,
Monfray, P., Mouchet, A., Orr, J. C., Plattner, G.-K., Sarmiento,
J. L., Schlitzer, R., Slater, R. D., Weirig, M.-F., Yamanaka, Y.,
and Yool, A.: Impact of circulation on export production, dis-
solved organic matter, and dissolved oxygen in the ocean: Re-
sults from Phase II of the Ocean Carbon-cycle Model Inter-
comparison Project (OCMIP-2), Global Biogeochem. Cy., 21,
doi:10.1029/2006GB002857, 2007.

Schlitzer, R.: Export production in the equatorial and North Pa-
cific derived from dissolved oxygen, nutrient and carbon data,
J. Oceanogr., 60, 53–62, 2004.

Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwan-
der, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H.,
Masson-Delmotte, V., and Jouzel, J.: Stable Carbon Cycle–
Climate Relationship During the Late Pleistocene, Science, 310,
1313–1317, 2005.

Volk, T. and Hoffert, M. I.: Ocean carbon pumps: Analysis of rela-
tive strengths and efficiencies in ocean-driven atmospheric CO2
changes, Geophys. Monogr. Ser., 32, 99–110, 1985.

Wilson, J. D., Barker, S., and Ridgwell, A.: Assessment of the spa-
tial variability in particulate organic matter and mineral sinking
fluxes in the ocean interior: Implications for the ballast hypoth-
esis, Global Biogeochem. Cy., 26, doi:10.1029/2012GB004398,
2012.

Yeager, S. G., Shields, C. A., Large, W. G., and Hack, J. J.: The
Low-Resolution CCSM3, J. Climate, 19, 2545–2566, 2006.

Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The signif-
icance of nitrification for oceanic new production, Nature, 447,
999–1002, 2007.

Biogeosciences, 11, 1177–1198, 2014 www.biogeosciences.net/11/1177/2014/

http://dx.doi.org/10.1029/2006JC003706
http://dx.doi.org/10.1029/2002JD002821
http://dx.doi.org/10.1029/2006GB002762
http://dx.doi.org/10.1029/2004GB002220
http://dx.doi.org/10.1357/0022240973224481
http://dx.doi.org/10.1029/2006GB002857
http://dx.doi.org/10.1029/2012GB004398

