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Hierarchical and dynamic seascapes:  a quantitative framework for scaling pelagic 34 
biogeochemistry and ecology  35 

1. ABSTRACT 36 

Comparative analyses of oceanic ecosystems require an objective framework to define coherent 37 

study regions and scale the patterns and processes observed within them.  We applied the 38 

hierarchical patch mosaic paradigm of landscape ecology to the study of the seasonal variability 39 

of the North Pacific to facilitate comparative analysis between pelagic ecosystems and provide 40 

spatiotemporal context for Eulerian time-series studies. Using 13-year climatologies of sea 41 

surface temperature (SST), photosynthetically active radiation (PAR), and chlorophyll a (chl-a), 42 

we classified seascapes in environmental space that were monthly-resolved, dynamic and nested 43 

in space and time. To test the assumption that seascapes represent coherent regions with unique 44 

biogeochemical function and to determine the hierarchical scale that best characterized variance 45 

in biogeochemical parameters, independent data sets were analyzed across seascapes using 46 

analysis of variance (ANOVA), nested-ANOVA and multiple linear regression (MLR) analyses. 47 

We also compared the classification efficiency (as defined by the ANOVA F-statistic) of 48 

resultant dynamic seascapes to a commonly-used static classification system. Variance of 49 

nutrients and net primary productivity (NPP) were well characterized in the first two levels of 50 

hierarchy of eight seascapes nested within three superseascapes (R2 = 0.5-0.7). Dynamic 51 

boundaries at this level resulted in a nearly 2-fold increase in classification efficiency over static 52 

boundaries. MLR analyses revealed differential forcing on pCO2 across seascapes and 53 

hierarchical levels and a 33 % reduction in mean model error with increased partitioning (from 54 

18.5 µatm to 12.0 µatm  pCO2). Importantly, the empirical influence of seasonality was minor 55 

across seascapes at all hierarchical levels, suggesting that seascape partitioning minimizes the 56 

effect of non-hydrographic variables. As part of the emerging field of pelagic seascape ecology, 57 



this effort provides an improved means of monitoring and comparing oceanographic biophysical 58 

dynamics and an objective, quantitative basis by which to scale data from local experiments and 59 

observations to regional and global biogeochemical cycles. 60 

  61 



2. INTRODUCTION 62 

2.1. The necessity of a formal pelagic seascape concept  63 

The pelagic ocean is a complex system in which organism distributions are affected by and 64 

provide feedbacks to physical and biogeochemical processes on multiple scales of spatial, 65 

temporal, and biological organization (Lubchenco and Petes, 2010, Doney et al., 2012). Non-66 

linearities are common in biogeochemical (e.g. Gruber, 2011; Hales et al., 2012), biophysical 67 

(e.g. Hsieh et al., 2005) and trophic (Litzow and Ciannelli, 2007, Brander, 2010) interactions. 68 

Furthermore, spatial heterogeneity is ubiquitous and occurs at all scales observed (Steele, 1991; 69 

Levin and Whitfield, 1994; Mitchell et al, 2008). Understanding and modeling pelagic ecosystem 70 

responses and feedbacks to environmental perturbation is therefore hampered by the lack of an 71 

objective framework to (1) scale local processes to ocean basins (2) define how temporal and 72 

spatial scaling of habitats may change regionally, and (3) place the ‘snapshots’ of data collected 73 

in a typical oceanographic research expedition into a regional context.  74 

To address issues of scale, change and context, terrestrial ecologists have looked toward 75 

the field of landscape ecology (Turner et al., 2001; Turner 2005). Terrestrial ecosystems are 76 

parsed into landscapes, defined in space by the main complex causal (Troll,1950) or reciprocal 77 

(Turner, 2005) relationships between the environment and the distributional patterns of 78 

organisms. Likewise, in the marine environment, physiological and ecological responses are 79 

closely coupled to the scale of physical forcing (Steele, 1989). Thus, the global ocean may be 80 

viewed as a mosaic of distinct seascapes, composed of unique combinations of physicochemical 81 

forcing and biological responses and/or feedbacks. 82 

The characterization of distinct ocean ecosystems based on ocean color can be traced as 83 

far back as Somerville (1853); however,  the most comprehensive approach combining 84 



geography, ocean color, and biogeochemistry can arguably be attributed to Longhurst (1998, 85 

2007). The Longhurst classification used chlorophyll a (chl-a) from the Coastal Zone Color 86 

Scanner, ship-based climatologies of nutrients, euphotic depth and several physical variables 87 

describing water column stratification. Although the classified provinces are static, rectilinear, 88 

and subjectively chosen, the resultant framework has been instrumental in understanding changes 89 

in fishery and zooplankton distributions (Beaugrand et al., 2000) and optimizing biogeochemical 90 

models, particularly satellite primary productivity algorithms (Siegel et al.,  2001). More recent 91 

efforts have used the maturing satellite data record to classify regions of biophysical coherence 92 

for coastal (Saraceno et al., 2006; Devred et al., 2007; Hales et al., 2012) and open ocean regions 93 

(Oliver and Irwin, 2008). The majority of these efforts have been temporally static (but see 94 

Devred et al., 2009 and Irwin and Oliver, 2009) and at a single scale. Importantly, few have 95 

verified their classifications with rigorous post-hoc statistical analyses using independent data 96 

sets at multiple scales (but see Vichi et al., 2011). 97 

We classified satellite-derived seascapes in a spatially and temporally specific fashion and 98 

explicitly test the hypothesis that coherent regions as identified with satellite data represent 99 

distinct regions of ecosystem functioning (Platt and Sathyendranath, 1999). We extend the 100 

methods presented by Saraceno et al. (2006) and Hales et al. (2012) to resolve the intra-annual 101 

evolution of seascapes in the open North Pacific based on a 13-year climatology of satellite 102 

observations. Furthermore, we explicitly apply the concept of patch hierarchy (Kotliar and 103 

Wiens, 1990; O’Neill et al., 1992; Wu and Loucks, 1995). Borrowed from landscape ecology, 104 

the hierarchical patch mosaic paradigm views the system as a nested and partially ordered set, 105 

where system dynamics are defined by the composite of interacting, but distinct patches within 106 

the system.  In our analysis, individual seascapes comprise the patches which aggregate (or split) 107 



to form superseascapes (subseascapes) at larger (finer) spatiotemporal scales. This application 108 

allowed us to classify basin-scale and gyre scale dynamics with the same domain and test 109 

hypotheses regarding resolution requirements for characterizing variability of different 110 

biogeochemical processes. First, we describe the general patterns of seasonal seascape variability 111 

across hierarchical levels. Then, we test the assumption that seascapes represent areas of distinct 112 

biogeochemical function by evaluating differences between seascapes using independent in situ 113 

distributions of nutrients, net primary productivity (NPP) and the partial pressure of carbon 114 

dioxide (pCO2) in the surface ocean. On a subset of these data, we compare the efficiency of 115 

classification between seasonally dynamic seascapes and a commonly utilized static framework 116 

(Longhurst, 1998; 2007). Finally, we demonstrate the utility of the dynamic seascape framework 117 

in reducing model error and illuminating regional variability of biophysical forcing of important 118 

biogeochemical processes and patterns.  119 

 120 

3. METHODS  121 

3.1. Study Area 122 

 The North Pacific includes the oligotrophic and subarctic gyres that are separated by the broad 123 

North Pacific current, NPC (Figure 1). In the western basin, the strong Kuroshio (~3 km hr-1) and 124 

Oyashio currents generate sharp physical and biochemical gradients.  In the east, the NPC 125 

broadens and slows (~0.5 km hr-1), bifurcating off the coast of British Columbia coast to form 126 

the Alaska and California Currents and contribute to the boundary circulation of the subarctic 127 

and subtropical gyres. The subarctic-subtropical transition zone from the Kuroshio extension into 128 

the eastern subarctic gyre is the largest sink region for atmospheric carbon dioxide in the North 129 

Pacific (Takahashi et al. 2009). Here, while  biological uptake of dissolved inorganic carbon 130 



(DIC) tends to counteract the warming effect in the summer, the bulk of the CO2 drawdown 131 

coincides with winter cooling and the resultant increase in solubility of CO2 in seawater 132 

(Takahashi et al., 2002).  133 

Superimposed on the physical boundaries described above, seasonal and latitudinal changes in 134 

surface temperature (SST) and photosynthetically active radiation (PAR) contribute to defining 135 

the seascapes in which ecological assemblages develop and persist. In this study, we have 136 

selected to restrict the domain to 120-240º W, 15-65º N in order to highlight open ocean 137 

variability by minimizing the influence of extreme values associated with ice-edge responses in 138 

the northern latitudes and tropical instability waves that pulse along the equator in the southern 139 

portion of the North Pacific subtropical gyre (Evans et al., 2009). 140 

3.2. Satellite data and processing  141 

As a first step, we classified seascapes using remote sensing data that was related to 142 

phytoplankton dynamics, namely chl-a, PAR and SST. We used archived monthly averages and 143 

8-day composites of the latest processing of satellite data provided by the Ocean Productivity 144 

Group (www.science.oregonstate.edu/ocean.productivity), as used in their primary productivity 145 

algorithms. These data have been cloud-filled which results in reduced variability at seascape 146 

boundaries that would otherwise have been associated with patchy cloud cover (Kavanaugh 147 

unpubl. data). We downloaded Level 3, 18 km binned, 8-day composites and monthly averages 148 

of SeaWiFS (R2010) chl-a, PAR, and Advanced Very High Radiometer sea surface temperature 149 

(AVHRR SST); the 18 km data were subsequently binned into ¼ degree pixels. The SeaWiFs 150 

(SW) data record extends from 1998-2010 albeit with episodic gaps during 2008-2010 due to 151 

sensor failure. Where missing, SW chl-a and PAR were interpolated using the comparable 152 

MODIS (R2012) product. Linear regression was conducted at each pixel using the eight-day 153 



composite of each sensor for each month over the years 2003-2010. Predicted SW chl-a did not 154 

vary more than 25% from actual SW chl-a (usually less than 10%) and predicted PAR varied less 155 

than 10% from actual SW PAR. The predicted 8-day composite was then used to fill gaps in the 156 

real SeaWiFs 8-day composites; monthly averages were computed from the combined product. 157 

Chl-a values >8 mg m-3 were masked to minimize the effect of coastal variability and maximize 158 

variability in the open ocean. The chl-a field was log10-transformed. All three fields were 159 

normalized (to a scale of -1 to1) prior to classification, where the maximum value would be 1, 160 

minimum -1 and median=0.  161 

 162 

3.3. Hierarchical classification of dynamic seascapes  163 

Because of the strong, complex coupling of phytoplankton to physical forcing at cellular (Jassby 164 

and Platt, 1976), local/community (Steele and Henderson, 1992; Belgrano et al., 2004) and 165 

mesoscales, we chose a classifier that was robust to nonlinear interactions, maintained 166 

underlying biophysical distributions, and allowed seascapes to be defined objectively at multiple, 167 

nested scales. In brief, we used a probabilistic self-organizing map (PrSOM, Anouar et al., 1998) 168 

combined with a hierarchical agglomerative classification (HAC, Jain et al., 1987) to achieve a 169 

non-linear, topology-preserving data reduction. SOMs have been used in oceanography to 170 

classify regions (e.g. Richardson et al., 2003; Saraceno et al., 2006), define regions of 171 

mechanistic coherence in predictive pCO2 models (Hales et al., 2012), and to find drivers of net 172 

primary productivity (Lachkar and Gruber, 2012). As with most SOM methods, PrSOM uses a 173 

deformable neuronal net to maintain data similarities and topological order between clusters. 174 

However, the PrSOM introduces a probabilistic formalism: clusters are produced by 175 



approximating the probability density function with a mixture of normal distributions and 176 

optimization based on a maximum likelihood function (Anouar et al., 1998).  177 

The PrSOM algorithm and  PrSOM-HAC combination algorithm are described in detail 178 

in Anouar et al. (1998) and Saraceno et al. (2006), respectively. We follow the method of 179 

Saraceno et al. with two exceptions: (1) monthly climatological grids were vectorized and 180 

concatenated to allow classification of space and time simultaneously, and (2) we chose multiple 181 

objective function thresholds (below)  to allow for multiple hierarchical levels to emerge.  182 

Briefly, PrSOM reduces the spatiotemporal D-variable  pixel vectors data set sequentially onto a 183 

M×N neuron map.  In our case, D=3 : SSTxyt, PARxyt, chl-axyt, where x,y, t denote the particular 184 

geographic coordinate and month of the pixel vector. Pixel vectors remain or move amongst 185 

neurons in an iterative fashion that optimizes a fit to a D-variate Gaussian distribution and 186 

maximum likelihood estimates (MLE) for each variable are calculated. As in simulated 187 

annealing, the trading distance expands and contracts (Anouar et al., 1998), with a maximum 188 

distance in our case set to three (~20% of total topological distance) and maximum iterations set 189 

to 1000. The neural map size (M x N=225) was chosen to maximize sensitivity to mesoscale 190 

processes while preventing underpopulated nodes (defined as less than 500 pixels). The map 191 

shape (M=N, square) was chosen for its simple geometry to minimize topological edge effects. 192 

The result after the final iteration were 225 weight vectors, each weight a MLE of a particular 193 

variable for a given neuron. 194 

The 225 weight vectors were reduced further by using a hierarchical agglomerative 195 

clustering (HAC) with Ward linkages (Ward, 1963). This linkage method uses combinatorial, 196 

Euclidian distances that conserve the original data space with sequential linkages (McCune et al., 197 

2002).  With each agglomeration and formation of a new seascape cluster, distances are 198 



recalculated to determine the distance of each vector to both its cluster centroid and the global 199 

centroid, equivalent to within-group and total sum of squares (GSS and TSS, respectively).  200 

An objective function (I, information remaining; McCune et al., 2002) was determined a 201 

priori to define the total number of seascapes: 202 

1. I = (TSS-GSS)/TSS    203 

where TSS=GSS when all seascapes are fused into one. To define seascapes at emergent scales 204 

by which we would evaluate the differences in biogeochemistry, we examined stepwise 205 

agglomerations of seascape classes (C), which resulted in local, rapid shifts in I. We compared 206 

the shift in the objective function of our actual data (D) to that which would occur under a 207 

random spatial structure (R) where increased class size would add (1/C) information. We then 208 

determined whether the proportional shift was greater (aggregated) or less (dispersed) than unity 209 

by defining an aggregation index (AI): 210 

2. AI= 1-[(I C (D) - I C-1(D)) / (I C (R) - I C-1(R))].  211 

 212 

3.4 Internal Validation of satellite-derived seascapes 213 

3.4.1 Post-hoc statistical verification. To conduct parametric post-hoc summaries, we accounted 214 

for autocorrelation and anisotropy in our remote sensing dataset and resampled at data densities 215 

that were statistically independent. Autocorrelation, ρ, and number of pixel pairs, Np, at a given 216 

distance (d) and azimuth (a) were calculated with the original log10-transformed chl-a data for 217 

each seascape as a function of 10 km binned distance and 45-degree binned direction. A local 218 

correction factor (θ (d, a)) for each distance-azimuth bin was calculated according to Fortin and 219 

Dale (2005) where: 220 

 221 



3.     θ (d, a) = (1-ρ (d, a))/ (1+ρ  (d, a))                       222 

 223 

A global correction factor, θG, was calculated for each seascape using a weighted average 224 

of  θ (d, a) using the weights Np (d,a):  225 

 226 

4.  227 

 228 

where dmax was the lesser of 600 km or 0.6 x distance to seascape edge. The global correction 229 

factor ranged from ~0.15 to ~0.4 (see Table 1) and was applied to the total number of pixels in a 230 

sample, N, to obtain the effective sample size, N’ for each seascape x month interaction: 231 

 232 

5.     N’= θG N 233 

 234 

Subsequently, N’ multivariate pixels were randomly selected for statistical comparison to test 235 

whether provinces result in different multivariate means. N’ was calculated for each month x 236 

seascape; all three fields were randomly resampled at the N’ level. Because data tended to be 237 

positively correlated at local and mesoscales and anticorrelated at larger scales, this limit resulted 238 

in a smaller effective sample size and therefore a more conservative estimate of seascape 239 

differences. 240 

 241 

3.4.2 Sensitivity. Classification algorithms that use different sensors, attributes, assumptions of 242 

linearity, or dispersed organizational structure will result in different division of state space and 243 

thus, the spatiotemporal location of seascapes and their boundaries. Here we focus on how robust 244 



post-hoc boundaries are to interannual changes in chl-a, via changes in community structure or 245 

unmeasured physical forcing such as mixed layer depth or eddy kinetic energy. Seascapes were 246 

classified as in Section 3.3 for each year, using the climatological means for SST and PAR, and 247 

the individual years’ monthly means for chl-a. Area of pixels were calculated (27.5 km x cosine 248 

(latitude) x 27.5 km for ¼-degree resolution) and total areal coverage summed for each seascape. 249 

Seasonal patterns of expansion and contraction for individual years were compared to the 250 

climatological pattern for each seascape. Interannual shifts in boundaries associated with large-251 

scale shifts in physical forcing are the focus of a different manuscript. 252 

 253 

3.5 External validation of satellite-derived seascapes 254 

3.5.1 Evaluation of biogeochemical differences among seascapes 255 

Differences in biogeochemical factors and processes among seascapes and the relative 256 

importance of seascapes compared to space and time were determined by evaluating archived 257 

nutrient concentrations, net primary productivity (NPP) and pCO2 data. Surface concentrations 258 

of nitrate (NO3
-), phosphate (PO4

3-) and silicate (SiO2aq) were downloaded from open ocean 259 

stations (N >12000) archived in the World Ocean Database, WOD (v.2009; http:// 260 

www.nodc.noaa.gov); data were subsequently binned into the nearest 1x1 degree pixel and 261 

monthly means were calculated (final N=3985). Climatological net primary productivity, NPP, 262 

was determined using monthly climatologies (1998-2010) of the updated carbon-based primary 263 

production model (Westberry et al., 2008) made available by the Ocean Productivity group 264 

(http://www.science.oregonstate.edu/ocean.productivity/). Monthly climatological data of the 265 

partial pressure of CO2 in surface waters (pCO2) were downloaded from the Lamont-Doherty 266 



Earth Observatory database (http://cdiac.ornl.gov/oceans/), and evaluated at the density reported 267 

by Takahashi et al., 2009.   268 

 269 

3.5.2 Comparison to Longhurst provinces 270 

 The North Pacific is represented by nine Longhurst regions that are seasonally static: Bering Sea 271 

(BERS), Subarctic East (PSAE), Subarctic West (PSAW), Kuroshio (KURO), Polar Front 272 

(NPPF), Subtropical West (NPSW), Subtropical Gyre (NPSG), and the Alaska (ALSK) and 273 

California Current Systems (CCAL) (Longhurst, 1998, 2006). Polygons delineating these regions 274 

were downloaded (http://www.vliz.be) and gridded to a 0.25-degree surface. The Alaska Current 275 

province did not have sufficient data density within the uninterpolated WOD set; thus, 276 

comparisons to emergent seascapes were made among the remaining eight provinces. 277 

 278 

3.6. Statistical Analysis 279 

 All statistics were performed using JMP v 8.2 (© SAS Institute, Cary NC). Satellite-280 

derived seascape, nutrient and pCO2 data were grouped according to seascapes and month. 281 

Summary statistics are reported for in situ data and for satellite data (post decorrelation) from 282 

analysis of variance (ANOVA) with Tukey-Kramer adjustments for multiple comparisons and 283 

different sample sizes. Nested ANOVA (nANOVA) were conducted to determine the relative 284 

importance of different hierarchical levels, or seasonality and space within a single hierarchical 285 

level on nutrients, nutrient ratios, and pCO2. Rather than arbitrarily assign season bins across a 286 

wide latitudinal extent, season was modeled by fitting a sine function to month of year 287 

(season=sine (month/4)), which resulted in a simplified seasonal cycle approximating the 288 

patterns of solar irradiance. Spatial variability was modeled as a function of the interaction of 289 

http://cdiac.ornl.gov/oceans/
http://www.vliz.be/


latitude and longitude, with the longitude function representing degrees from the dateline. These 290 

variables were included as a metric to gauge the relative importance of continuous variability 291 

within seascapes.  292 

To assess the relative importance of different biophysical interactions across seascapes, a 293 

multiple linear regression model was built to determine the effect of SST, chl-a, salinity and 294 

season on pCO2 within seascapes. All regression coefficients were scaled by their dynamic 295 

ranges and centered on their means to produce a standardized effect size. Individual effect sizes 296 

are thus unit-less and can be interpreted the percent change in pCO2 that is associated with a 297 

percent change in the driver after accounting for weighted effects of other significant drivers.  298 

Effect sizes (+/- standard error) were compared between parameters and across seascapes and 299 

scales.   300 

We compared the dynamic, objectively defined seascapes described above to the static, 301 

subjectively defined seascapes described by Longhurst based on their relative efficiency in 302 

partitioning variance of representative biogeochemical variables. The choice of variables reflects 303 

an attempt to remain neutral for intercomparison while using available synoptic data: chl-a was 304 

used explicitly in both the PrSOM-HAC and Longhurst classification, nutrients were explicit in 305 

Longhurst classification and variability in NPP may be considered implicit in both schemes. 306 

Common summary statistics from post-hoc ANOVA to verify classification schemes are the F-307 

statistic, a ratio of between-class variance to within-class variance, and the R2, a measure of total 308 

variance explained.  Because the latter can be biased to total number of classes, we compared the 309 

F-statistic (F-stat) between classification schemes. To account for different spatial sampling, 310 

NPP and chl-a were resampled at the location of the WOD nutrient casts. Classification 311 

efficiencies within the year and across variables were compared using pair-wise t-tests. 312 



 313 

4. RESULTS 314 

The PrSOM-HAC combination resulted in optimized clusters that accounted for approximately 315 

90% of variance in climatological means of satellite-derived chl-a, SST, and PAR (Table 1). 316 

There were three distinct local maxima in the objective function (Figure 2a) from which we 317 

derived three levels of nestedness (Figure 2b). While month-wise spatial decorrelation resulted in 318 

a reduction of ~80% of the data, seascapes were still significantly different for all variables 319 

considered and at all scales (p<0.05 Tukey-Kramer HSD test), with the exception of chl-a 320 

between two clusters at the finest resolution (Table 1). In relative terms, increased resolution to 321 

eight seascapes resulted in small, but significant, addition of variance explained for chl-a and 322 

SST, but a larger increase in variance of PAR explained. Thus nesting eight seascapes within 323 

three superseascapes resulted in the characterization of the seasonal cycle of insolation, warming 324 

and biological response for the North Pacific (Figure 2c). Seascape mean states and the 325 

boundaries that define them should be interpreted as the combination of advection and local 326 

shifts in chl-a, SST, and PAR. Spatiotemporal patterns are described in detail below. 327 

 328 

4.1. Spatiotemporal hierarchical patterns 329 

4.1.1. First-level dynamics 330 

 At the basin scale, three distinct seascapes were classified that generally describe the known 331 

divisions between the subarctic, transition and subtropical regions (Figures 2b, 3). All three areas 332 

are present year round, with the transition zone approximating the division between the transition 333 

zone chlorophyll front (TZCF, Polovina et al., 2001) and the subarctic front. The Kuroshio 334 

extension was evident in February and the eastern north Pacific bifurcation became evident in 335 



May. Most of the seasonal dynamics, however, were limited to latitudinal variation in the 336 

location of the transition zone.  337 

 338 

4.1.2. Second-level dynamics 339 

 At the second level of hierarchy, eight total seascapes were classified (Figure 2b, Figure 4) that 340 

generally described basin scale seasonality. Three seascapes each arose from the subtropics and 341 

subarctic whereas two seascapes resulted from division of the transition zone. Note that the 342 

number of seascapes found in each month was different and that a given seascape usually 343 

occupied a shifted geographical region as the time of year varied. Since the methodology 344 

distributed the seascapes in space and time in order to minimize the within-seascape variance of 345 

the variables considered, it was possible to follow the same composite properties by following a 346 

given seascape in time. Seascapes were nominally identified based on dominant season, 347 

geographic region and/or trophic status based on mean chl-a concentration, specifically: 1) 348 

Summer subtropical (Su-ST); 2) Winter subtropical (W-ST); 3) Oligotrophic boundary (OB); 4) 349 

Winter transition  (W-TR); 5) Summer transition  (Su-TR); 6) Mesotrophic boundary (MB); 7) 350 

Winter subarctic (W-SA); 8) Summer subarctic (Su-SA). 351 

In January, latitudinal variations in light separated the four winter seascapes: W-SA, MB, 352 

W-TR, and W-ST, with only minimal expression of Su-TR present in the extreme southeast part 353 

of the study region (Figure 4). February marked the expression of the Kuroshio extension with 354 

high chl-a in seascape W-TR and differentiation of regions abutting the North Pacific current. 355 

Concurrently, the OB seascape expanded eastward, bifurcating W-ST into northern and southern 356 

components. In March, high chl-a water from the Oyashio current and the Sea of Japan was 357 

entrained in the subarctic front, illustrated by the cross-basin expansion of the Su-SA and MB 358 



seascapes, while W-TR and W-ST disappeared. April marked the onset of a spring transition 359 

with abrupt shifts in seascape identity:  The W-SA seascape, which persisted Jan-Mar, 360 

disappeared entirely and was replaced by Su-SA. May, June, and July were similar to April, 361 

distinguished primarily by the northeastward expansion of Su-ST and the N-S broadening of MB 362 

north and south along the North American continent. During this time, the interface between the 363 

two boundary seascapes tended to follow the seasonal migration of the TZCF. During August, 364 

the Su-SA zone was replaced by the MB seascape, while the Su-TR zone became constricted by 365 

the expansion of MB from the north and the OB from the south. September was similar to 366 

August, although the fall transition began then with the first hints of the W-ST encroaching from 367 

the southwest and the W-SA in patches within the Alaska Gyre and in the SW along the 368 

boundary of the Oyashio and Kuroshio. The fall transition was most clearly expressed in 369 

October, with the Tr-SA zone retreating from the open SA towards the continents, the first break 370 

in the cross-basin expanse of MB since February, and the first widespread appearance of the 371 

three winter zones.   372 

The progression of seascapes found in our analysis gives a new perspective on 373 

seasonality in the North Pacific. On a basin scale, winter appears to consist of three months 374 

spanning November – January, and was defined by the full cross-basin expression of W-ST and 375 

W-SA seascapes. Summer, defined by the cross-basin extent of the Su-TR and OB zones, 376 

accompanied by the expansion of Su-ST to the south and Su-SA persists for five months (April –377 

August). Fall, defined by the first absence of defined summer or boundary zones, and first 378 

appearance of winter zones, was most clearly expressed in October, although hints of transition 379 

are evident in September at higher latitudes. The spring transition, defined by the first cross-380 

basin appearance of the boundary seascapes and the first appearance of the Su-ST and Su-SA 381 



zones, was most clearly defined in March, although changes from winter conditions were evident 382 

in February. 383 

 384 

4.1.3. Third level dynamics 385 

Fourteen seascapes emerged at the finest hierarchical level. These seascapes were nominally 386 

identified by their relative [chl-a] and were indexed SS1 to SS14 (Figure 2b, Figure 5). 387 

Increasing hierarchical resolution from eight to fourteen seascapes did not affect the boundaries 388 

of the two subtropical seascapes (Su- and W-ST= SS1 and SS2 respectively), however, it split 389 

each of the remaining six seascapes.  390 

In general, the resultant seascapes represented increased spatial variability in the 391 

subtropics and seasonal opposites at higher latitudes. The OB split into two distinct 392 

subseascapes, SS3 and SS4, both present for all but two months of the OB duration (March- 393 

September vs. February- October). The W-TR split into two distinct subseascapes (SS5 and SS6) 394 

marked primarily by latitudinal differences in temperature and light. The Su-TR split into two 395 

seascapes (SS7 and SS9) that seasonally represented marginal ecosystems (e.g. the California 396 

Current). From the sixth seascape (MB), distinctions arose associated with the spring (SS8) and 397 

fall (SS12) transition in the subarctic with seascapes that identify the Kuroshio extension in 398 

February and April and the California current in early spring and late autumn. The seventh 399 

seascape (W-SA) split (SS10 and SS11) to include a higher chl-a region (SS11) apparent in the 400 

subarctic in October that shrank to align with the boundary regions in the winter. Finally, the 401 

division of the Su-SA seascapes allowed for the slightly different spatiotemporal dynamics of the 402 

eastern (SS 13) and western subarctic gyres (SS14).  403 

4.2. Sensitivity 404 



In general, the classification was robust to local shifts in chl-a as (Figure 6).  For most seascapes 405 

and months, local shifts in [chl-a] resulted in < 5 % change in seascape extent. The exception 406 

occurred in the subtropical summer. Here shifts in chl-a were associated with decreased 407 

classification rates to the Su-ST which manifested in decreased summer expansion in the Su-ST 408 

and increased summer expansion in the OB relative to the climatology.  This suggests that 409 

classified boundary between these two systems is relatively diffuse. Nevertheless, the timing of 410 

expansion and contraction remained as robust in the subtropics as in the transition and subarctic 411 

seascapes. 412 

 413 

4.3 In situ data evaluation 414 

4.3.1 Biogeochemical patterns 415 

Here we tested the hypothesis that seascapes represent a framework for describing 416 

biogeochemical distributions. Indeed, seascapes explain a significant portion of variance of 417 

nutrient concentrations. Because nesting was unbalanced (Su-ST and W-ST in two hierarchical 418 

levels), absolute effects could not be translated into percent of model explained. However, the 419 

relative effect of nesting levels was determined by examining the F-statistics (Table 2). In most 420 

cases, the greatest amount of variance was explained by the coarsest level of hierarchy, although 421 

nested levels still explained significant variation (Table 2). The exception to the dominance of 422 

Level 1 occurred with NPP, where Level 2 (characterizing the seasonal cycle) resulted in the 423 

largest contribution of variance explained in the fully nested model  (Table 2: F-stat= 312) and 424 

pCO2 where higher resolution resulted in better characterization of variance ( F-stat of Level 3 > 425 

Level 1> Level 2). For salinity and nutrients, nesting continuous temporal and spatial variability 426 

within seascapes results in minimal increases of explanatory power (Table 3) after accounting for 427 



differences among seascapes. However, the effect of seasonality was strong for NPP, suggesting 428 

that subseascape temporal shifts contribute significantly to total variability (Table 3: seascape F-429 

stat= 17.6; season F-stat = 79.1). The role of space and time within seascapes was also somewhat 430 

strong for pCO2, but contributed less than that of differences among seascapes (Table 3: seascape 431 

F-stat=15; season= 10; space= 5). 432 

Biogeochemical patterns tended to coincide with basin scale variation in temperature and 433 

salinity, with the lowest nutrient concentrations and in Su-ST and highest nutrient concentration 434 

in the Su-SA.  However, other variables did not follow this pattern. Within the subtropics, nitrate 435 

was not different between seascapes but PO4, and to a lesser degree SiO2, increased from Su-ST 436 

to OB (Table 4 and Level 2 Tukey-Kramer HSD test: Su-ST<W-ST<OB, p<0.05). This led to 437 

low N: Si and N: P in the OB compared to other subtropical seascapes and its northern neighbor 438 

(Table 4 and Level 2 Tukey-Kramer HSD test:  OB< W-ST~Su-ST<W-TR, p<0.05). pCO2 also 439 

had a local minimum in the transition zone (Table4 and  Level 1 Tukey-Kramer HSD test: 440 

Transition < Subarctic < Subtropics, p<0.05). Finally, while rates of satellite-derived NPP were 441 

highest in the Su-SA, (Table 4, mean NPP=660 mg C m-2 d-1), NPP was   <10 % lower in the 442 

Su-TR (mean NPP=600 mg C m-2 d-1) and significantly higher than  in the remaining seascapes 443 

(Level 2 Tukey-Kramer HSD test, p<0.05). 444 

4.3.2. Dynamic seascape and Longhurst comparison 445 

The F-statistics (Table 5) are a measure of the ratio of the average between-group variance to the 446 

variance within a group, and thus a general means by which to compare the efficiency of 447 

variance partitioning of different classification schemes.  We examined the efficiency of the 448 

different classification schemes for capturing the spatial variability throughout the year of:  chl-a 449 

(included explicitly in the PrSOM-HAC classification), surface PO4 (included in explicitly in the 450 



Longhurst classes) and NPP (included in neither but implied by both through choice of 451 

classifying parameters). Within individual months and across the annual cycle, PrSOM-HAC-452 

based classification was more efficient at capturing variability in chl-a.  The differences between 453 

classification schemes were minimal in winter and maximal in early summer, with the efficiency 454 

of PrSOM-HAC seascapes being more than 2.25X greater than that of Longhurst provinces for 455 

classifying chl-a variability over the annual cycle. Within months, with the exception of 456 

February through April, PrSOM-HAC derived seascapes explained more variability of NPP than 457 

did the Longhurst provinces (Table 5); on average, the efficiency of the PrSOM-HAC 458 

classification was 65% higher than of Longhurst (F-stat=53.7 compared to F-stat=32.0). For PO4 459 

within months, PrSOM-HAC derived seascapes resulted in greater between-group variability 460 

than Longhurst provinces for most months considered, with increased classification efficiency of 461 

> 50% on average over the year. The PrSOM-HAC approach is therefore a better predictor of 462 

conditions even when examining parameters not explicitly included in PrSOM-HAC that were 463 

explicitly included by Longhurst. 464 

4.4 Biophysical forcing of pCO2  465 

The biophysical forcing on pCO2 varied as a function of seascape and hierarchical level (Table 6, 466 

Figure 7). In preliminary analyses, chl-a was found to be a stronger predictor of pCO2 than was 467 

NPP when both were included in the model; the latter was therefore not included in subsequent 468 

analyses. With the exception of one seascape in the second level, seasonality was a relatively 469 

minor effect on pCO2 across all hierarchical levels. Furthermore, substantial variation in North 470 

Pacific pCO2 was explained by constraining of the dynamic range of explanatory variables of the 471 

simple MLR model within seascape spatiotemporal boundaries (Table 5). The multiple linear 472 

regression analysis explained up to 88% and typically >60% of the variability. Correlations (after 473 



accounting for sample density within each seascape) averaged 0.68 for the coarsest level, 0.73 474 

for level 2 and 0.70 for level 3. Root mean square error of the multiple linear regression model 475 

was also reduced with finer resolution.  Across seascapes, pixel weighted mean RMSE (+/- SE) 476 

decreased from 18.5 µatm (basin) to 15.3 (+/-1.6) µatm at Level 1 to 12.4 (+/-1.1) µatm at Level 477 

2 to 12 (+/-0.8) µtam at Level 3. 478 

In the subtropics, at the coarsest scale, pCO2 decreased as a function of increased chl-a, 479 

cooling, and wintertime processes not related to cooling. pCO2 also increased with decreased 480 

salinity in this region. With increased resolution (Level 2), the negative salinity effect appeared 481 

to be driven by dynamics in OB with positive associations of salinity in both Su-ST and W-ST. 482 

The OB was unique also due to the strong contribution of chl-a to pCO2 drawdown. 483 

Across the transition zone, chl-a had the strongest effect on pCO2 (Table 5, Figure 7). 484 

SST was not a significant factor in this region when changes in salinity were included. The chl-a 485 

effect was significantly greater than warming effect in this region for the first two levels of 486 

hierarchy, however, the relative effects in the third level could not be resolved in many regions 487 

due to decreased sample size.  488 

In the subarctic, physical mixing appeared to be the dominant factor in driving pCO2 in 489 

our model, with strong positive salinity effects, both in W-SA and Su-SA. While chl-a was a 490 

significant driver of pCO2 in the subarctic in general, its effect was dwarfed by the mixing signal 491 

of salinity and cooling signal of SST in all but the MB seascape.   492 

  493 



5. DISCUSSION 494 

Because of the challenges inherent to working in an advective environment and with organisms 495 

that exhibit patchy distributions on multiple scales, seascape ecology requires a sound 496 

framework for analyzing spatiotemporal patterns in the structure of pelagic assemblages and the 497 

biogeochemical function they provide (Karl and Letelier, 2009). The utility of the seascape 498 

framework described here is supported by three lines of evidence: 1) hierarchically organized 499 

seascapes generally follow known patterns of circulation and characterize the seasonality of the 500 

North Pacific, allowing for objective extrapolation of observations in space and time; 2) 501 

seascapes represent unique spatiotemporal entities, describing distinct surface nutrient and 502 

primary productivity regimes; 3) seascapes represent distinct biophysical interactions that are 503 

relevant to predicting important processes such as regional variability in the biophysical forcing 504 

of pCO2. Furthermore, the framework that we present improves upon the static approach of 505 

Longhurst and allows for objective scaling of phenomena in space and time.  506 

 507 

5.1 Hierarchical organization and scaling. The North Pacific has several seasonally distinct 508 

features that exhibit a spatiotemporal hierarchy. Our seascape classification allowed visualization 509 

of the onset of the Kuroshio extension, the Oyashio bloom and entrainment into the subarctic 510 

frontal current, and the seasonal and meridional changes in the transition region between the 511 

oligotrophic subtropical and the productive subarctic gyres (Figure 2-4). The dynamics of these 512 

transition zones were also apparent with higher order clustering, as were heightened seasonality 513 

in the subarctic and transition regions (Figures 3 and 4). Importantly, our classification allowed 514 

for non-linear interaction between attributes and allowed for hierarchical organization and 515 



seasonal expansion of seascapes that were robust to local variability of a single variable, e.g. chl-516 

a.   517 

As suggested by previous studies (Devred et al., 2008; Hales et al., 2012), we clearly 518 

show that seasonally evolving boundaries characterize the dynamics of marine systems better 519 

than static, rectilinear boundaries. However, classification error or uncertainty increases when 520 

the gradients are subtle and or the variability within each seascape is high relative to the mean.  521 

In the subtropics, where SST and PAR are co-linear and the chl-a signal is low and relatively 522 

stable, the classification was  sensitive to local changes in chl-a in the subtropics, resulting in 523 

over-estimation of the mid-summer Su-ST extent and underestimation of the OB extent . The 524 

boundary uncertainty is also reflected in the similar chl-a values for the climatological means of 525 

the Su-ST and the OB, which suggests that shifts in PAR and SST, rather than “biology” may 526 

drive this seascape division. However, in a given year, late summer eddies  that regularly occur 527 

along 30 °N (Wilson et al., 2008) may drive the ST-OB boundary further south, whereas the 528 

climatological signal may be dampened by spatial variability between years. In addition, chl-a 529 

seasonality in the Su-ST at Station ALOHA (Letelier et al. 1993, Winn et al., 1995) and at the 530 

Su-ST: OB boundary  region (Siegel et al., 2013)  is known to be dominated by mixed layer 531 

dynamics and changes associated with photoacclimation rather than shifts in phytoplankton 532 

abundance. Thus, there remains uncertainty to the nature of the Su-ST division and how it is 533 

affected by local variation in physical forcing, acclimation and shifts in phytoplankton 534 

abundance and community structure.  However, despite the uncertainty, the different nutrient 535 

ratios and biophysical forcing of pCO2 suggest that the two seascapes function differently.  536 

Certainly, future efforts should take advantage of improved synoptic mixed layer depth models 537 

and or satellite-derived salinity. These efforts will likely reveal greater complexity in the 538 



seascape mosaic, even at the seasonal scale, and should be validated with biogeochemical and 539 

ecological data sets. 540 

 541 

5.2. Distinct biogeochemical distributions. The seasonal cycle of nutrients, nutrient ratios, and 542 

NPP in the North Pacific is described by the boundaries of satellite-derived seascapes suggesting 543 

that seascapes demarcate natural boundaries in nutrient availability and or nutrient use. 544 

Differences between seascapes accounted for a large amount of variance in both nutrient 545 

concentrations and nutrient ratios; seascape differences were also more important than both 546 

spatial and temporal variation within seascapes. While nutrient concentrations across seascapes 547 

followed patterns expected from satellite chl a data, distinct minima in surface N:P and N:Si 548 

occurred within the oligotrophic boundary seascape. This region is well documented to have 549 

persistent, albeit modest rates of N2-fixation overlain by irregular summer-fall blooms of 550 

diazotrophs (Karl et al., 2012; Wilson et al., 2008; White et al., 2007) with N2-fixation affecting 551 

subsurface nutrient distributions from the TZCF into the subtropics (Deutsch et al., 2001). 552 

Accordingly, tracking the spatial and temporal migration of the OB may be analogous to tracking 553 

the optimal habitat in the surface ocean for specific diazotrophs that would be selectively favored 554 

in low N: P or N: Si environments, particularly diazotrophic symbionts in diatoms (Venrick, 555 

1974; Villareal, 1991). Certainly, iron deposition (Dutkiewicz et al., 2012), irradiance,  or nitrate 556 

loss through denitrification upstream (Luo et al., 2013) may play a role in biogeographic patterns 557 

of diazotrophs, although the in situ verification of iron availability as well as diazotroph 558 

abundance has been has been historically limited (but see Luo et al., 2012). 559 

Surface biogeochemical distributions appear to have a seasonally evolving biogeographic 560 

signature, although circulation and biological effects on these distributions could not be resolved. 561 



Whether this dynamic, biogeochemical geography is associated with shifts in phytoplankton 562 

distributions (e.g. Weber and Deutsch, 2010) remains to be seen through careful experiments that 563 

manipulate biogeochemical and ecological models. We did not explicitly include phytoplankton 564 

assemblage information in our study, nor have we yet addressed interannual variation in seascape 565 

boundaries. Linking the seasonal and interannual dynamics of seascapes and their shifting 566 

boundaries to shifts in phytoplankton diversity and biogeochemical pattern remains a logical next 567 

step.  568 

 569 

5.3. Unique biophysical interactions. One of the major goals of a dynamic seascape framework 570 

is to illuminate regional patterns and drivers of biogeochemical processes to improve 571 

understanding of underlying mechanisms and better parameterize global models. Regional 572 

variability is evident in the discrete comparison of PrSOM-HAC based and Longhurst-based 573 

partitioning. PrSOM-HAC based partitioning was more efficient in explaining seasonal and 574 

spatial variability of chl-a, PO4 and satellite-derived NPP than Longhurst-based provinces. We 575 

recognize that these response variables are inter-related (e.g. the satellite-derived carbon based 576 

NPP uses the nitricline depth to establish C:chl-a ratios, Westberry et al., 2008); continued cross 577 

comparison using available independent datasets particularly with taxon- or rate- specific in situ 578 

or modeled measurements will be ultimately necessary. Nevertheless, we show that PrSOM-579 

HAC based partitioning is more efficient at classifying  seasonal biogeochemical variability, 580 

even  of data used to inform Longhurst classification- both explicitly (nutrient) and implicitly 581 

(NPP). This general finding is supported by other observations (Hardman-Mountford et al., 582 

2008) or statistical comparisons (Vichi et al., 2011): a single Longhurst province cannot account 583 



for the seasonal environmental variability in many regions of the ocean. Furthermore, 584 

constructing models within PrSOM-HAC based seascapes does not rely on a large seasonal 585 

parameterization (Hales et al., 2012). Changes in model performance and parameterization 586 

across seascapes can be interpreted as likely dependence on measured hydrographic parameters, 587 

rather than some unknown seasonally varying process. Dynamic objective seascapes may serve, 588 

therefore, as a more accurate extent than static frameworks by which to intercompare models and 589 

improve their parameterization. 590 

Several investigators have recognized the challenges of predicting pCO2 based on its 591 

highly variable dependence on different biophysical parameters in space and time. Park et al. 592 

(2010) used empirical subannual relationships between climatological pCO2 and sea surface 593 

temperature, along with interannual changes in SST and wind speed to predict changes in surface 594 

pCO2. Permitting the subseasonal regressions to be fit on any three or more sequential months 595 

allowed for different phases and shapes of the annual cycle and reduced the error for the pCO2: 596 

SST relationship for a given coordinate. In the North Atlantic, using a similar domain size to 597 

ours, Friedrich and Oschlies (2009) trained a SOM-based predictive model with ARGO data by 598 

explicitly including latitude, longitude, and time in the training set. Telszewski et al. (2009) 599 

predicted  pCO2 by associating pCO2 with a SOM-based classification of mixed layer depth, 600 

SST, and chl-a.  While this method did not rely on bioregionalization, the predictive capacity in 601 

space and time was limited by the location and timing of the training pCO2 data set.  Hales et al. 602 

(2012) found that regional prediction of pCO2 within static, but objectively-classified coastal 603 

seascapes was markedly improved by including time-dependence in a semi-mechanistic model. 604 

As suggested by Hales et al. (2012), the implicit inclusion of time in the classification of state 605 

space allowed us to diminish the effect of time in our simple predictive pCO2 models. While 606 



satellite-based estimates may suffer from large gaps (Friedrich and Oschlies, 2009), we found 607 

that classification of coherent biophysical regions- i.e. seascapes, using only a subset of the 608 

available satellite record,  resulted reduced hydrographical variability within a given seascape 609 

and increased model prediction capacity. Furthermore, while the classification inputs and 610 

statistical model inputs were similar, they were, with the exception of chl-a, from independent 611 

sources. Thus, seascapes may provide a means by which to test different hypotheses regarding 612 

the relative importance of different biophysical forcing and to conduct comparisons of oceanic 613 

ecosystem functioning (Murawski et al., 2010).  614 

Seascapes represented regions of distinct biophysical forcing of pCO2. We were able to 615 

describe a transition zone divided into several regions within which biological and physical 616 

factors interact differently to modulate pCO2 and, potentially, air-sea CO2 flux. Considering 617 

processes within these distinct seascapes may help elucidate differential controls of the complex 618 

ecological phenomena such as how the biological pump contributes to air-sea exchange. For 619 

example, abutting the transition zone to the south, the oligotrophic boundary seascape may 620 

respond with diazotrophy-fueled blooms to draw down surface pCO2. In the northernmost 621 

seascapes, the drawdown effects of pCO2 by both cooling (via SST) and net community 622 

productivity (via chl-a) seemed to be small relative to mixing. In the transition seascapes, where 623 

spring-summer NPP was greater than any other seascape, the chlorophyll effect on pCO2 was 624 

greater than the temperature effect, whether coarsely or finely defined in the hierarchy. We note 625 

that coefficients were similar across the MB, OB, and the two transition seascapes, albeit with 626 

dampened seasonality effects and less predictive error in the transition seascapes. This similarity 627 

may be a result of over partitioning but it is also likely that our simple predictive model 628 

underestimates spatial variability by omitting processes such as mesoscale circulation and wind.  629 



While we acknowledge that interannual variability may play a role in boundary location along 630 

the transition zone (e.g. Bograd et al., 2004), the seasonal climatological seascape boundaries 631 

demarcate distinct nutrient ratios and NPP (this study).   632 

Differences in environmental forcing across seascapes represent ecosystem-level 633 

variation in the processes that drive pCO2. In particular, across the transition, summer production 634 

may not merely keep pace with, but rather exceed, the effect of warming in the summer 635 

(Takahashi et al., 2002, 2009). Some neural network –based predictions have resulted in regional 636 

biases in the seasonal cycle of pCO2 (Telszewski et al., 2009, Landschützer et al., 2013), which 637 

may lead to inaccurate partitioning of drivers. However, in our study, the seasonality of predicted 638 

pCO2 did not exhibit coherent zonal or meridional biases nor was there apparent seasonality 639 

within the Su-TRAN seascape. Furthermore, cruise-based studies in the NE Pacific (Lockwood 640 

et al., 2012; Howard et al., 2010; Juranek et al., 2012) support the our assertion that biological 641 

production drives pCO2 patterns across the Su-TRAN seascape. 642 

 643 

Conclusion:  644 

The seascape framework described here considers dynamics in space and time simultaneously, 645 

including both advective and local shifts in state space, extending the landscape concept which 646 

has tended to focus on aggregates in space (O’Neill et al., 1992; Wu, 1999; but see Gillson, 647 

2009). Dynamic, satellite-derived seascapes describe variability in biogeochemical patterns, NPP 648 

and environmental forcing of pCO2. Seascapes can serve as indicators of spatiotemporal 649 

modifications in ecosystem structure and function (this study; Platt and Sathyendranath, 2008) 650 

and objective extents by which to extrapolate and/or compare in situ observations. We recognize 651 



that classification algorithms that use different sensors, attributes, assumptions of linearity, or 652 

dispersed organizational structure will result in different division of state space and thus, the 653 

spatiotemporal location of seascapes and their boundaries. However, we can learn much about 654 

the organization of the system by systematic comparison of method, attribute inclusion, and 655 

scale. In addition to the biogeochemical applications presented here, imposing objectively 656 

defined boundaries may be a means for applying the ecosystem concept to the open ocean (Cole, 657 

2005; Kavanaugh et al., 2013). We are currently exploring the relevance of satellite seascapes to 658 

describe microbial communities, document boundary shifts associated with interannual forcing 659 

such as ENSO (e.g. Irwin and Oliver, 2009) and characterize long term seascape shifts apparent 660 

in marine ecosystem models, extending univariate understanding (e.g. Polovina et al., 2011) to a 661 

more multivariate ecosystem response.  With increased technological capacity to sense both 662 

remotely and autonomously the aquatic environment, we now have the capacity for synoptic 663 

observations and characterization of unique combinations of physicochemical forcing and 664 

biological responses and/or feedbacks at several scales. Continued development of the seascape 665 

framework will help identify the major drivers of spatiotemporal variability of aquatic systems, 666 

and conversely, characterize the role that spatiotemporal variability plays in pelagic ecosystem 667 

functioning.    668 

  669 



Figure  captions: 670 

Figure 1. Mean annual meridional surface velocities of the North Pacific (1998-2010). Current 671 
velocities are modeled from satellite altimetry (Ocean Surface Current model, OSCAR; Bonjean 672 
F. and G.S.E. Lagerloef, 2002). Overlain are general locations of major currents (white lines, 673 
italics), classic static province divisions (black lines; Longhurst 1997, 2008) and seasonal range 674 
of the transition zone chlorophyll front, TZCF (grey dashed,  Polovina and others, 2001). See 675 
text for further description of natural features (Introduction 2.2) and comparisons between 676 
Longhurst provinces (Methods 3.6) and dynamic seascapes (this study).  677 

Figure 2. Hierarchical structure of North Pacific Seascapes as defined by classification of 678 
satellite-derived SST, PAR, and chl-a. A. Percent aggregation defines emergent hierarchical 679 
levels marked by dashed lines in all subplots at N=3, 8, and 14 Seascapes. B. Relative Euclidean 680 
distances of seascapes at three hierarchical levels. Color-coding corresponds to Figures 3 and 4 681 
(3rd level not colored). C. Percent of variance of SST, PAR, and chl-a explained through 682 
analysis of variance of seascapes at different hierarchical levels. Seascape identifiers and their 683 
abbreviations used in text and Table 1 are as follows: 1) Summer subtropical (Su-ST); 2) Winter 684 
subtropical (W-ST); 3) Oligotrophic boundary (OB); 4) Winter Transition (W-Tr); 5) Summer 685 
Transition (Su-Tr); 6) Mesotrophic boundary (MB); 7) Winter in subarctic (W-SA) 8) Summer 686 
subarctic (Su-SA).  687 

Figure 3. Seasonal migration of seascapes in the North Pacific basin: Level 1. Eight seascapes 688 
were classified using a combination of a probabilistic self –organizing map and hierarchical 689 
clustering algorithm (PrSOM and HAC, respectively). Color codes indicate unique 690 
classifications and reflect relative concentrations of chl-a with red denoting higher 691 
concentrations and blue denoting lower concentrations.  692 

Figure 4. Seasonal migration of seascapes in the North Pacific basin: Level 2. Eight seascapes 693 
were classified using a combination of PrSOM and HAC; color codes reflect different unique 694 
seascapes ranked by their relative concentrations of chl-a. White areas denote regions excluded 695 
because of cloud cover, ice, or high chl-a mask. Seascape identifiers and their abbreviations are 696 
as in Figure 2. 697 

Figure 5. Seasonal migration of seascapes in the North Pacific basin: Level 3. Fourteen seascapes 698 
were classified using a combination of PrSOM and HAC; color codes reflect different seascapes 699 
ranked by their relative concentrations of chl-a.  700 

Figure 6. Sensitivity of seascape boundaries to interannual changes in chl-a.  The areal extent  of 701 
Level 2  (N=8) seascapes are shown for the seasonal cycle. Open circles denote shifts in areal 702 
extent  within seascapes for individual years. Solid circles denote shifts within climatological 703 
seascapes. Seascape identifiers are as follows: a) Summer subtropical (Su-ST); b) Winter 704 
subtropical (W-ST); c) Oligotrophic boundary (OB); d) Winter Transition (W-Tr); e) Summer 705 
Transition (Su-Tr); f) Mesotrophic boundary (MB); 7) Winter in subarctic (W-SA) g) Summer 706 
subarctic (Su-SA).   707 

Figure 7. Effect sizes on pCO2 of SST, salinity, season, and [chl-a]. Effect sizes were calculated 708 
using multiple linear regression analysis within seascapes (Methods: Section 3.6). Only the first 709 
two levels are presented, see Table 6 and Results (Section 4.3) for complete details. 710 



  711 



 712 

Table 1. Summary Statistics of mean (standard error) satellite-derived SST, PAR, and chl-
a within seascapes at three different hierarchical levels. % effective pixels depicts 
reduction in sample size following month-wise spatial decorrelation analysis. R2 is 
proportion of variance explained by ANOVA of individual variables after decorrelation 
resampling (see methods for details). Seascapes that share letters are not statistically 
distinct from one another (Tukey-Kramer Honest Square Distance multiple comparisons 
analysis) in that variable. 

 
% 

effective 
pixel 

SST PAR Log10 (chl-a) 

Level 1: 3 seascapes    
Subtropics 0.18 24.3 (0.02) 46.4 (0.04) -1.21 (0.001) 
Transition 0.27 17.6 (0.02) 37.1 (0.05) -0.71 (0.001) 
Subarctic 0.47 8.3 (0.01) 25.0 (0.03) -0.36 (0.001) 
R2  0.74 0.55 0.74 
Level 2: 8 seascapes    
Summer Subtropics, Su-ST 0.24 27.6 (0.02) 52.3 (0.04) -1.31 (0.001) 
Winter  Subtropics, W-ST 0.19 26.5 (0.02) 39.8 (0.04) -1.27 (0.001) 
Oligotrophic Boundary, 
OB 

0.38 21.6 (0.02) 46.2 (0.03) -1.13 (0.001) 

Winter Transition, W-TR 0.28 22.3 (0.03) 26.8 (0.05) -0.99 (0.002) 
Summer Transition, Su-TR 0.44 16.0 (0.02) 40.7 (0.03) -0.60 (0.001) 
Mesotrophic Boundary, 
MB 

0.15 12.8 (0.01) 25.5 (0.02) -0.42 (0.001) 

Winter Subarctic, W-SA 0.31 5.67 (0.01) 14.1 (0.03) -0.40 (0.001) 
Summer Subarctic, Su-SA 0.21 5.81 (0.01) 35.6 (0.03) -0.26 (0.001) 
R2  0.89 0.86 0.80 
Level 3: 14 Seascapes     
1 0.35 27.6 (0.02) 52.3 (0.03) -1.31 (0.001) 
2 0.43 26.5 (0.02) 39.8 (0.04) -1.27 (0.001) 
3 0.38 23.7 (0.02) 50.0 (0.04) -1.16 (0.001) 
4 0.19 20.3 (0.02) 44.1 (0.03) -1.12 (0.001) 
5 0.12 23.1 (0.02) 27.7 (0.05) -1.06 (0.002) 
6 0.15 19.4 (0.05) 23.6 (0.10) -0.76 (0.004)a 
7 0.24 20.2 (0.03) 36.7 (0.06) -0.76 (0.002)a 
8 0.05 14.8 (0.02) 17.1 (0.04) -0.56 (0.001) 
9 0.25 14.5 (0.02) 42.0 (0.03) -0.55 (0.001) 
10 0.15 3.43 (0.02) 13.8 (0.03) -0.49 (0.001) 
11 0.21 8.01 (0.02) 14.4 (0.03) -0.31 (0.001) 

12 0.40 12.1 (0.01) 28.3 (0.02) -0.37 (0.001) 
b 

13 0.14 8.29 (0.02) 37.2 (0.03) -0.37(0.001) b 
14 0.51 3.71(0.01) 34.2 (0.03) -0.17(0.001) 
R2  0.94 0.90 0.83 
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Table 2. Nested analysis of variance: effect of hierarchical seascape level on nutrients, NPP and 
pCO2. F-statistics for each explanatory variable are shown and are significant (p<0.05).R2 
denotes variance explained of fully nested model. Brackets denote the level of nesting with Level 
3[Level 2, Level 1 ] describing variance explained by Level 3 seascapes after accounting for 
their nesting within Level 2 which is nested in Level 1. 
 

Salinity NO3 SiO2 PO4 

NO3 / 

SiO2 

NO3 / 

PO4 pCO2 NPP 

Level 1 1303 1074 772 1768 145 448 20 90 

Level 2 [Level 1] 153 66 102 164 39 19 11 312 

Level 3 [Level 2, Level1] 64 34 40 124 56 17 29 74 

R2 0.55 0.55 0.42 0.62 0.28 0.38 0.26 0.38 
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Table 3. Nested analysis of variance: relative role of among and within Level 2 seascape 
variability on nutrients, NPP, and pCO2. F-statistics (proportion contributed) for each 
explanatory variable is shown. F-statistics are significant (p<0.05) unless otherwise noted. R2 
denotes variance explained of fully nested model. Brackets denote nesting within Level 2 
seascapes. 
 

Salinity NO3 SiO2 PO4 

NO3 / 

SiO2 

NO3 / 

PO4 NPP 

pCO2 

Level 2 168 174 74 166 53 102 17.6 15 

Season[Level 2] 20 29 25 21 14 14 79.1 10 

Space[Level 2] 18 5 15 13 5 NS 

1.8 

4.9 5 

Season*Space[Level2] 21 2.3 8 10 13 2.1 7.7 9 

R2 0.59 0.58 0.46 0.61 0.26 0.39 0.43 0.27 
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Table 4. Mean concentrations and ratios (+/- SE) of nutrients, pCO2 and NPP in 
surface waters of Level 2 seascapes.  

Seascape N 

NO3 

(µM) 

SiO2 

(µM) 

PO4  

(µM) 

NO3 / 

SiO2 

NO3 

/PO4 

pCO2 

(µatm) 

NPP 

(mg C 

m-2 d-1) 

Su-ST 385 
0.26 

(0.02) 

2.51 

(0.13) 

0.08 

(0.01) 

0.13 

(0.01) 

4.04 

(0.29) 
360 (2) 416 (3) 

W-ST 187 
0.37 

(0.09) 

3.75 

(0.31) 

0.14 

(0.01) 

0.13 

(0.03) 

3.35 

(0.52) 
351 (3) 413 (4) 

OB 700 
0.25 

0.02) 

3.3 

(0.09) 

0.18 

(0.01) 

0.1 

(0.01) 

2.4 

(0.17) 
356 (2) 408 (3) 

W-TR 282 
0.61 

(0.06) 

2.89 

(0.13) 

0.15 

(0.01) 

0.23 

(0.02) 

5.25 

(0.33) 
331 (4) 359 (10) 

Su-TR 953 
1.67 

(0.08) 

5.1 

(0.13) 

0.36 

(0.01) 

0.3 

(0.01) 

4.53 

(0.16) 
338 (3) 600 (10) 

MB 726 
4.67 

(0.17) 

8.84 

(0.25) 

0.61 

(0.01) 

0.47 

(0.01) 

6.65 

(0.18) 

341  

(2) 
517 (8) 

W-SA 233 
6.31 

(0.33) 

11.8 

(0.55) 

0.85 

(0.02) 

0.57 

(0.02) 

6.96 

(0.25) 
347 (3) 266 (13) 

Su-SA 519 
7.53 

(0.21) 

14.0 

(0.34) 

0.9 

(0.02) 

0.59 

(0.02) 

7.8 

(0.17) 
343 (2) 660 (12) 
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Table 5. Comparison of classification efficiency between PRSOM seascapes  and Longhurst 
provinces within and across months. Shown are F-statistics resulting from analyses of variance 
of surface [chl],  NPP and a representative nutrient (PO4). All F-statistics are statistically 
significant (p<0.05) unless otherwise marked (NS). Bold= largest F-statistic and thus largest 
ratio of between group (explained) to within group (unexplained) variance. NPP and chl-a have 
been log10-transformed prior to analysis. Both weighted (W) and simple (S) means F-statistics 
across months are reported. T-ratio and p-value reflect 1-sided t-test (PrSOM-Longhurst). 

   SeaWiFs [chl-a] NPP (CbPM) WOD- [Phosphate] (0-30 
m) 

MO N PRSOM LONG-
HURST N PRSOM LONG-

HURST N PRSOM LONG-
HURST 

1 150 96.9 42.1 150 37.9 30.6 139 85.4 45.8 
2 153 65.6 32.7 153 9.8 24.5 150 34.2 50.3 
3 172 80.5 31.4 172 16.8 36.9 166 48.1 40.3 
4 335 266 86.9 335 5.0 7.8 302 81.9 28.4 
5 475 455 90.8 475 60.8 17.9 458 173 86.9 
6 489 649 276 489 85.4 34.2 444 357 196 
7 514 645 347 514 64.0 45.2 493 198 112 
8 568 724 326 568 102 62.0 538 213 194 
9 296 216 151 296 38.0 32.2 245 49.5 89.7 
10 273 236 118 273 11.1 5.5 242 76.0 44.5 
11 197 86.9 38.4 197 44.0 33.4 168 63.6 57.1 

12 94 27.8 26.9 94 12.7 2.1 NS 92 35.7 16.1 

Mean 
(W)  431 187  53.7 32  161 106 

Mean 
(S)  296 131   40.6 27.7   117 80.1 

t-ratio   3.79  2.02  2.45 

p>t   0.002   0.04   0.02 
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N mean(pCO2) Salinity SST [chl a] Season R2

Subtropics 749 353 (0.49) -17.8 (1.7) 4.8 (1.4) -7.6 (2.0) 10.1 (0.9) 0.26
Transition 219 336 (0.8) -32.6 (2.8) 2.7 (3.0) NS -40 (2.4) 8.3 (2.0) 0.62
Subarctic 703 346 129 (4.6) -43.8 (1.7) -24 (3.1) 2.4 (1.8) NS 0.67
Su-ST 244 358 (0.6) 9.9(2.1) 15(1.5) 4.6 (2.1) 3.8 (1.2) 0.34
W-ST 197 349 (0.7) 2.5 (2.5) NS 8.3(2.2) 5.2(2.5) 13 (8.7) 0.35
OB 308 353 (0.8) -33.9 (2.7) 11.3 (2.43) -23.5 (3.0) 10.9 (1.6) 0.41
W-TR 145 336 (0.9) -15.2 (2.8) -4.8 (2.6) -29 (1.9) 4.5 (1.5) 0.64
Su-TR 74 335 (1.54) -29.4 (5.0) 10.9 (5.7) -28.9 (3.0) 2.3 (5.0) NS 0.65
MB 181 333 (0.8) -18 (2.0) 3.4 (2.3) NS -29 (3.6) 13.1 (2.1) 0.54
W-SA 300 356 (0.9) 148 (7.0) -39.3 (1.7) -3.1 (3.5) NS2.5 (1.3) NS 0.78
Su-SA 222 342 (1.3) 125 (5.2) -28.0 (4.0) -22.5 (3.7) -8.5 (3.8) 0.78
SS1 244 358 (0.6) 9.9(2.1) 15(1.5) 4.6 (2.1) 3.8 (1.2) 0.34
SS2 197 349 (0.7) 2.5 (2.5) NS 8.3(2.2) 5.2(2.5) 13 (8.7) 0.35
SS3 107 352(1.35) -12.3(4.5) 10.7(3.5) -17.5 (5.2) 12.7 (2.8) 0.22
SS4 102 359 (1.1) -29 (3.3) 27 (3.3) 7.9 (3.2) 16.5 (2.3) 0.65
SS5 41 338 (1.4) 4.0(3.6) NS 2.5 (4.3) NS -11.4 (4.0) 6.4 (2.6) 0.44
SS6 23 340 (1.4) -10.6 (2.8) 8.8 (3.9) -26.4 (2.5) 3.0 (2.5) NS 0.88
SS7 9 343 (2.1) -4.4 (8) NS 163 (43) -180 (47) 84 (28) 0.84
SS8 67 328 (0.9) -14 (1.7) -2.5 (2.6) NS -15.2 (2.6) 9.0 (2.4) 0.68
SS9 36 336 (2.2) -23.2 (4.5) 8.1 (6.1) NS -16.2 (4.2) 3.4 (3.5) 0.56
SS10 114 377 (1.5) 18.2 (4.9) -28.8 (3.8) -1.3 (7.9) NS1.9 (2.4) NS 0.51
SS11 67 341 (1.7) 77.9 (8.7) 0.1 (5.9) NS -13.7 (3.1) 5.1 (5.1) NS 0.73
SS12 96 336 (1.1) 135 (6.7) -17.8 (3.9) -4.4 (3.2) NS2.9 (4.4) NS 0.84
SS13 107 337 (1) -16.6 (3.6) 3.9 (2.9) NS -25 (4.5) 6.0 (2.2) 0.38
SS14 108 349 (1.8) 134 (7.6) -34.2(5.8) NS -18 (5.1) -17 (5.3) 0.82
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Table 6. Variable forcing of pCO2  by salinity, SST, [chl a] and Season within seascapes at different hierarchical 
levels. Effect sizes (+/-SE)  for each explanatory variable are shown (Methods: Section 3.6). Effects  are significant 
(p<0.05) unless otherwise noted (NS=not significant). R2 denotes variance explained of full model.  Pixels that were 
present in two or more seascapes were excluded. [chl-a] values were log 10 -transformed prior to analysis.
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