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Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of
contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of
leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in
corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated
relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral
records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals
is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated
contaminants in the surrounding sediment suggest that resuspension is an important transport medium for
transferring heavymetals to corals. Increasedwinds, particularly during the 1990s, were accompanied by higher
coralmetal composition at Castle Harbour. Coupledwithwind-induced resuspension, interannual changes in sea
level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral
metal assimilation. At John Smith's Bay, large scale convectivemixingmay be driving interannual metal variabil-
ity in the coral record rather than impacts from land-based activities. Results from this study provide important
insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore
environment.

Published by Elsevier B.V.
1. Introduction

Bermuda is a crescent shaped chain of islands located on a sea-
mount in the western North Atlantic and supports some of the most
northerly reefs in the world (Fig. 1). The islands are densely populated,
and in the absence of suitable landfill space, bulk metal waste and
municipal solid waste incinerator ash has been dumped in the sea at a
‘foreshore reclamation site’ in an inshore basin, Castle Harbour (CH).
The marine landfill (or seafill) has grown to encompass an area of
35 acres in the last 25 years (Jones, 2010). Dominated by metal-bearing
fine-grain sediment, resuspension in CHcan liberate legacy contaminants.
Recent surveys have shown that widespread leaching of different
contaminant classes (especially metals) has occurred from the landfill
resulting in a pronounced halo of contamination in the surrounding
sediment (Jones, 2010). Within the halo there is a small patch containing
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numerous large brain corals (Diploria labyrinthiformis). Some of these
corals are large enough to have established themselves before the
marine land filling began and have provided a unique opportunity
to investigate the geochemistry of the coral skeletons and provide a
high-resolution proxy record of environmental contamination associated
with the seafill.

Flood et al. (2005) and Jones (2010) provide a detailed historical
analysis of widespread anthropogenic influences that have occurred
in CH in the last 100 years, including extensive dredging and the
commencement of the landfilling processes. Briefly, the dumping
started sometime in the early 1970s (although exact dates are uncer-
tain), which included the disposal of cars, buses, and mopeds. Prior to
the landfill, extensive dredging occurred in CH to create land for an air
station during World War II (Tucker, 1983). According to coral surveys
in the 1970s, the dredging caused mass mortality of large, old corals in
CH (Dodge and Vaisnys, 1977). More recently bulk waste, such as
scrap metal, domestic appliances, construction waste (soils, rubble,
and plasterboard), electrical goods, PVC plastics, and used tires were
added to the waste stream (Fig. 1C). Since the mid 1990s municipal
solid waste incinerator ash, generated from combustion of household
garbage, was disposed off at the reclamation site, generally after being
cement-stabilized into 1 m3 blocks (Hjelmar, 1996; Jones, 2010). No
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Fig. 1. (A) Map of Bermuda and locality in reference to the eastern United States with coral drilling sites at Castle Harbour and John Smith's Bay indicated by bullets and reef zone
delineated by dashed line. (B) Enlarged map of Castle Harbour and location of marine landfill, coral collection sites, and coral patch reefs within the Harbour. (C) Photograph of
approximately 20–30 cm Diploria labyrinthiformis head from Castle Harbour with marine landfill debris in the background. (D) Black water emanating from the landfill in Castle
Harbour at low tide when anoxic material drains out of the landfill.
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attempt ismade to control themovement of seawater through the land-
fill and seawater levels rise and fall in synchrony with the external tide.

The geochemistry of coral skeletons has been widely used to study
environmental variability, since corals precipitate their CaCO3 (aragonite)
skeleton directly from seawater. High-resolution proxy records extracted
from coral skeletons can provide detailed information on environmental
change by accurately recording changes in physical and chemical param-
eters such as SST, river input, salinity, and pollution. Predominantly, this
work has focused on stable isotopic (δ13C, δ18O) and major and minor
elemental (Sr/Ca, U/Ca) analyses. The increased environmental threat of
toxic contamination to coral reef ecosystems, however, has motivated
scientists to employ corals as biomonitors of pollution through the exam-
ination of trace metal concentrations.
Many studies have shown uptake of metals by scleractinian
corals (Howard and Brown, 1984; Fallon et al., 2002; David, 2003;
Reichelt-Brushett and Harrison, 2005; Ramos et al., 2009). Abun-
dances of trace metals in corals have been explored to monitor envi-
ronmental change and to reconstruct temporal and spatial patterns
of contaminant input to the coral reef environment (e.g., Scott, 1990;
Guzman and Jimenez, 1992; Bastidas and Garcia, 1999; Fallon et al.,
2002; David, 2003; Runnalls and Coleman, 2003; Al-Rousan et al.,
2007; Edinger et al., 2008; Prouty et al., 2008; Chen et al., 2010; Wang
et al., 2011). Metals are incorporated into coral skeletons through sub-
stitution of dissolved metal species via Ca substitution, trapping of par-
ticulate matter within the skeletal matrix, and uptake of organic matter
from either the coral tissue or directly from the water (see reviews by
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Howard and Brown, 1984; Hanna and Muir, 1990; Brown et al., 1991).
Biological parameters can also control metal deposition in the skeletal
structure, with symbiotic zooxanthellae playing an important role in
the accumulation and regulation of trace metals (e.g., Reichelt-Brushett
and McOrist, 2003).

Contaminants are bioavailable to corals from ingestion with food
(particulate phase), tissue-facilitated transport, and/or passive diffu-
sion through dissolved phase. Uptake of metals can also be a function
of the bioavailability in terms of its complexation and binding capacity.
For example, Calmano et al. (1993) found that weakly adsorbed contam-
inants aremore bioavailable to aquatic biota relative to complex-mineral
bound contaminants. Bioavailability of contaminants can also be in-
creased through resuspension of contaminant sediment (Eggleton and
Thomas, 2004). With coral reefs being particularly vulnerable to the
amount of sediment provided by anthropogenic activities (Smith and
Buddemeier, 1992), resuspension ofmetal-bearingfine-grained sediment
represents a recurring ecological threat. Although there is still debate as to
the specifics of metal incorporation (Cohen and McConnaughey, 2003),
the relationship between metal exposure and accumulation in coral
skeletons is proving a valuable tool for reconstructing natural and anthro-
pogenic change in reef environments.
2. Material and methods

2.1. Field collection

A single colony of D. labyrinthiformis (grooved brain coral) was
collected (May 2000) from 16 m depth approximately 1 km from
the shore of John Smith's Bay (JSB) on the southeastern edge
(64°W, 32°N) of the Bermuda platform (Fig. 1A). Because the coral
was collected from the edge of the most southern portion of the
reef, the site is exposed to open-ocean conditions and represents a
pristine environment — an oligotrophic, subtropical gyre. Within
4–5 km of the coral site, water depths reach 1000 m. There are no
rivers on Bermuda due to the porous nature of the limestone bedrock,
so JSB does not receive terrigenous runoff from riverine input. In con-
trast to JSB, corals collected in CH were collected approximately 30 m
from the edge of the seafill and living at water depth of 3–4 m with
restricted water flow (Fig. 1B). The southern edge of the landfill is
semi-submerged in the waters of CH, with dumping of bulk waste
and cement stabilized ash from the island's incinerator serving as a
potential source of contamination to CH (Knap et al., 1991; Flood
et al., 2005; Jones, 2010). Sediment near the coral collection site,
in the north of the Harbour, is dominated by fine, silt-sized particles
(b62 μm) (Knap et al., 1991; Jones, 2010). As a result of high turbidity,
visibility is low and light levels are below 50% of incident illumination
(Morris et al., 1977; Flood et al., 2005). Within CH, coral cover and spe-
cies distribution are greatest with increasing distance from the landfill
(Flood et al., 2005), with the sediment tolerant D. labyrinthiformis serv-
ing as the dominant species (Smith et al., 1998).

For trace metal composition, the CH corals were sampled annually,
where average growth rates were 5.4 mm yr−1 according to annual
density banding revealed in X-radiographs. Samples for Hg analysis
were taken from two additional corals from CH, and Hg values are
reported for 4-yr increments. Average growth rates based on annual
extension rates from JSB yield approximately 3.8 mm yr−1 (Goodkin
et al., 2005). Based on this age model, the JSB core was sampled bienni-
ally using a diamond blade band saw. In all the coral samples, the
septotheca, the area of highest density calcification, was separated
from the calyx using a Dremel hand-held tool. Sampling from solid
thecal wall helps to minimize the potential for diagenetic alteration or
secondary aragonite precipitation due to the isolation of the center of
the wall from skeletal pore spaces filled with seawater (Cohen et al.,
2004). Further discussion of materials and sampling has been previous-
ly published (Cohen et al., 2004; Goodkin et al., 2005).
2.2. Sample treatment and major and minor metal analyses

Standard trace element cleaning of Teflon labware and preparing
samples for analysis were conducted in a class-100 clean room envi-
ronment at the Woods Hole Oceanographic Institution (WHOI). To
remove surface contamination associated with handling and to
minimize the presence of non-lattice bound phases from the aragonite
lattice (e.g., accessory organic and oxide phases associated with
adsorbed metals, occlusion and trapping of discrete detrital particles),
isolated bulk coral samples were chemically cleaned using previously
established methods modified from Shen and Boyle (1988), Guzman
and Jarvis (1996), and Bastidas and Garcia (1999) and dried overnight.
This process involved a sequence of oxidizing, reducing and leaching
steps, with multiple rinses and ultrasonication in Milli-Q water. This
protocol did not include a hydrazine step that is typically included to
remove oxide coatings, therefore both lattice bound and non-lattice
bound elements are reported here. The bulk coral sampleswere homog-
enized by crushingwith an agatemortar and pestle and passed through
polypropylene sieves to an optimal size fraction (200–700 μm) (Shen
and Boyle, 1987). The samples were then leached in 0.015 N HNO3 for
20 min to isolate compound trabeculae.

Approximately 2 mg of the homogenized coral powder (CaCO3)
was weighed out to yield a dissolved Ca concentration of 100 ppm
to minimize matrix-induced mass discrimination (Rosenthal et al.,
1999). Coral powders were dissolved and diluted with ultra-pure
concentrated HNO3 and 0.1 ppb of an indium (In) was added which
served as an internal standard to correct for instrument drift and
sample matrix effect. A detailed discussion of relevant methods can
be found in Prouty et al. (2008). In brief, major and minor element
analyses were carried out on a high-resolution double focusing mag-
netic sector-field inductively coupled plasma mass spectrometer
(HR-SF-ICP-MS) (Finnigan Element2). The samples were analyzed
using a self-aspirating 20 μL min−1 nebulizer attached to a quartz
cyclonic spray chamber, using argon as a carrier gas. A washout
time of 1 min was applied to unknowns and standards and 90 s to
blanks. Both low and medium resolution analytical modes were
used with a 10% and 80% mass window, respectively, in order to
maximize instrument sensitivity. The signal intensity was obtained
by integration of the counting signal of the scanning mass over a
4 min acquisition period.

For Hg analysis, approximately 200 mg of the cleaned powder was
used without dissolution or further preparation (Lamborg et al., 2013).
To investigate signal replication, Hg concentrationswere analyzed from
two adjacent corals collected from CH. Determination of low-level
Hg by calcination–isotope dilution ICP-MS is discussed in Lamborg
et al. (2013). In brief, the coral powder was heated to 850 °C while
in-line with the ICP and an enriched 200Hg0 vapor standard, and
the 202Hg/200Hg ratio integrated in the resulting chromatograph.
Primary signal calibration for Hg was achieved using gas injections
from a natural isotope abundance saturated vapor standard. The
absolute instrument detection limit was approximately 200 amol
(10−18 mol), with a practical limit of detection of 2000 amol (Lamborg
et al., 2013).

2.3. Numerical time-series analysis

Several statistical techniques were employed that are commonly
used with climate data when the time-series are short and noisy, as
well as datasets that are non-evenly sampled or with missing values
(e.g., Ghil et al., 2002). Spectrum Analysis-Multitaper Method (MTM)
(Vautard et al., 1992) was used to perform detailed spectral analysis
on the coral metal and meteorological records. Wavelet analysis was
also employed to determine both the dominant modes of variability
(as detected using singular spectrum analysis) and their variability in
time where the time-series is decomposed into time–frequency space
(Torrence and Compo, 1998). For identifying common patterns of
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variability in the multivariate metal records, Empirical Orthogonal
Function (EOF) analysis was used (Preisendorfer, 1988). In a similar
manner to principal component analysis, there is decomposition
of the dataset to a new coordinate system. The advantage of EOF
analysis is that both temporal and spatial patterns can be evaluated
(e.g., Fisher, 2002). Meteorological data (e.g., wind) were obtained
from National Climatic Data Center (NCDC) and total observations per
year were calculated from hourly observations for winds originating
from the southeastern quadrant (80–190°) at 10, 15, and 20 m/s.
Winds from these directions were selected as they would be blowing
over the greatest fetch and thus would be most capable of developing
the largest waves and strongest currents that could, in turn, resuspend
seabed sediment either at the site of the corals or in adjacent shallower
waters and advect it past the corals. Cumulative annual precipitation
was computed from hourly precipitation records from the Bermuda
Weather Service.

3. Results

3.1. Site comparison

In order to investigate whether corals living in CH have been ex-
posed to contaminants from the adjacent landfill, coral metal ratios
from CH and the control site at JSB were compared using a Student's
t-test over a 19-year period (1975–1994) when the two records over-
lap. The Student's t-test reveals a statistical difference (p ≤ 0.05)
between metals at the two sites (except for Cd/Ca, Cu/Ca, and Fe/Ca
ratios) (Table 1). This difference is captured in the concentration
whisker-box plots (Fig. 2). Within the group of elements, CH was
characterized by greater Ba, Mn, Pb, Zn, and Hg concentrations rela-
tive to JSB concentrations. The only elemental ratio elevated at JSB
relative to CH was Sr/Ca, which is often driven by changes in
sea-surface temperature SST (e.g., Goodkin et al., 2007). The greatest
enrichment in the CH coral samples was in the Zn, Mn, and Hg con-
centrations (Fig. 2). Average CH coral Hg concentrations were 7 to 9
times greater than those measured from JSB. There was no statistical
difference (Student t-test, p ≤ 0.05) between coral Hg concentrations
measured from the 2 corals in collected in CH. Average Zn concentra-
tions were two orders of magnitude greater at CH than at JSB and Mn
concentrations were 4 times greater.

3.2. Castle Harbour

CH coral trace metal concentrations were also compared to sedi-
ment and water concentrations from CH (Jones, 2010). Except for
Ba and Sr where water concentrations were not available, trace
metal sediment concentrations were enriched relative to the water
concentrations (Fig. 2). Likewise, CH coral concentrations were also
elevated relative to the water concentrations (Student t-test, p ≤ 0.05).
Table 1
The table shows average metal/Ca ratios and their respective standard deviation (± SD)
for the period of overlap between 1975 and 1994. Student's t-test reveals statistical differ-
ence (p ≤ 0.05) between Castle Harbour and John Smith's Bay except for Cd/Ca, Cu/Ca,
and Fe/Ca, as indicated by gray text. an = 10; bn = 3.

Site Castle Harbour John Smith's Bay

Parameter Mean (n = 20) ±SD Mean (n = 10) ±SD

Cd/Ca mmol/mol 0.32 0.18 0.33 0.06
Ba/Ca mmol/mol 4.7 0.17 4.58 0.11
Cu/Ca mmol/mol 17.43 10.16 32.2 20.2
Pb/Ca mmol/mol 0.21 0.09 0.140 0.06
Mn/Ca mmol/mol 2.60 1.91 0.74 0.43
Fe/Ca mmol/mol 16.12 10.24 13.74 12
Zn/Ca mmol/mol 1.01 1.64 3.60E-02 2.01E-02
Sr/Ca mmol/mol 8.98 9.94E-02 9.05 3.69E-02
Hg pmol/mol 229.73a 108.70 29.42b 16.10
Sediment trace metal concentrations were enriched relative to CH coral
concentrations, with the exception of Sr, Fe, and Zn, which displayed
distribution coefficients (Kd = concentration in sediment:concentration
in coral) of less than 1. Zinc was the only element that did not show a
statistical difference (Student t-test, p ≤ 0.05) between coral and sedi-
ment concentrations. Relative to CH coral concentrations, the greatest
enrichment in sediment trace metal concentrations was observed for
Hg and Pb, with Kd values of 1010 and 150, respectively.

The CH core was sampled annually for metal variability from 1975
to 2005. There was a distinct interannual signal in the metals:Ca
ratios (Cd/Ca, Pb/Ca, Mn/Ca, Fe/Ca, and Zn/Ca) but no apparent
long-term trend except for Sr/Ca and Ba/Ca (Fig. 3). The EOF analysis
revealed a dominant first EOF, accounting for 54% of the total variance
with little contribution from Sr/Ca and Ba/Ca (Table 2). The first EOF
was dominated by individual loadings from Zn/Ca and Mn/Ca at
80%, with equal contribution from Cd/Ca, Pb/Ca, and Fe/Ca at 60%. In
comparison, Sr/Ca variability was captured in the second EOF and
Ba/Ca variability was captured in the third EOF, suggesting that
these two elements were controlled by different processes. The first
EOF also captured the interannual periodicity (Fig. 3) with a broad
MTM spectrum centered at approximately 4 yrs and passing the
95% confidence interval (Fig. 4A). Morlet wavelet analysis confirmed
these results with power spectrum centered between 4 and 6 yrs, as
well as a time-dependent component to the periodicity (Fig. 4B–D).

3.3. JSB

The JSB coral was sampled and analyzed biennially for the period
1776 to 1994 (Fig. 5). In order to identify common variance between
the biennial metal records, EOF analysis was applied. The first EOF
explained 35% of the total metal variance and was characterized by
all elements except Sr/Ca and Ba/Ca, with enhanced loadings of Cd/Ca
and Zn/Ca ratios (Table 3). In contrast to the first EOF, Sr/Ca and Ba/Ca
equally dominated the second EOF. The dominance of high-frequency
variability over the long-term trendwas captured in the spectral analy-
sis, which showed interannual variability centered on spectral bands of
6 and 9 yrs with additional periodicities at the interdecadal scale of 12
and 18 yrs (Fig. 6A). These results were confirmed by wavelet anal-
ysis (Torrence and Compo, 1998) (Fig. 6B–D), which also revealed a
time-dependent variability associated with these periodicities. The
scale-averaged wavelet power over the 6- to 10-yr band was strongest
in the early record (Fig. 6C). In contrast to previous Pb concentration
and isotope records from JSB documenting a rise in anthropogenic Pb
emissions (Kelly et al., 2009), bulk Pb/Ca values from this study did
not capture this rise, most likely resulting from the incorporation of
non-lattice bound Pb associated with detrital particles or suspended
material (e.g., Neil et al., 1994; Mertz-Kraus et al., 2009).

3.4. Meteorological data

Spectral analysis was conducted on cumulative annual precipita-
tion from 1949 to 2012 and wind speeds > 10 m/s from 1942 to
2012 from the SE (80–190°). The latter was chosen given the highest
density of observations relative to wind speeds at 15 and 20 m/s. At
the 99% confidence interval, a 3-yr period accounted for 30% of the
wind speed variance for winds coming from the SE. For cumulative
annual precipitation, a 3-yr period was detected at the 90% confi-
dence interval, accounting for 23% of the variance. Both records also
exhibited decadal and multi-decadal periods. For the period of over-
lap (1975–2005), the wind data and the CH first EOF were statistically
correlated (Pearson's product-moment correlation coefficient, r = 0.59;
p = 0.05), with increased winds corresponding to elevated trace metal:
Ca ratios as captured in the first EOF (Fig. 7). For the 30-yr period, the
1990s exhibited the greatest number of observations for winds greater
than 10 and 15 m/s (Fig. 7A–B). Wind speed greater than 15 m/s was
also statistically correlated to the first EOF (r = 0.52; p = 0.05). This
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decadewas characterized by elevated values in the CH record (first EOF).
There was no statistical relationship between cumulative annual precip-
itation and CH record (first EOF). Monthly mean sea level data were
acquired from NOAA stations 2695535 and 2695540 located at the
Bermuda Institute of Ocean Sciences and a 12-point running mean was
applied to the monthly data. While the monthly sea level data captures
a strong interannual signal, there was no statistical relationship between
SL and the CH first EOF.

4. Discussion

4.1. Castle Harbour

The dissolution and leaching of contaminants from the CH marine
landfill have led to elevated levels of trace metals in the water, sedi-
ment, and mussel tissue samples from CH (Jickells and Knap, 1984;
Burns et al., 1990; Knap et al., 1991; Smith et al., 1998; Flood et al.,
2005; Jones, 2010). Elevatedmetal:Ca ratios in the proximal CH corals
relative to those measured from distal JSB appear to reflect input from
land-based activities, specifically leaching of contaminants from the
municipal landfill and surrounding sediment. For example, emissions
inventory showed that municipal solid waste incineration is the most
significant source of Hg emissions in Bermuda, with an estimated
emission of 17 kg/yr and the dump is likely a source of Hg (3.3 kg/yr)
for CH (Peters et al., 2008). Results from this study support the hypothesis
that there is higher bioaccumulation of metals in corals from CH relative
to other areas of Bermuda's nearshore environment (e.g., JSB) that are
exposed to open water. While the landfill has increased to encompass
an area of 0.10 km2 over the last 35 yrs (Jones, 2010), the CH record
does not reveal a long-term trend. Instead, coralmetal variability appears
to be dominated by export of contaminants triggered by periodic input.

Elevated trace metal concentrations in the sediment of CH relative
to the water samples suggest that the suspended, metal-bearing fine
sediment is a greater source of biologically available metals relative
to the dissolved fraction. Given that fine-grained suspended sediment
accumulates and concentrates metals (Forstner and Salomons, 1980;
Reichelt-Brushett and Jones, 1994), the silt-size sediment in CH may
provide an important transport medium for transferring heavy metals
to corals. Biogeochemical processes can also play a role, for example
elevated coral Zn and Fe levels at CH relative to the sediment may re-
flect trophic transfer of nutrients through feeding, where zooplankton
uptake may be a significant source of metal enrichment (Marshall,
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2002). This is particularly true for Zn, which is an essential macronu-
trient, where reduced tissue-regulation permits greater Zn accumula-
tion in the skeleton (Esslemont, 2000).
Table 2
Percent of variance associated with the first three EOF modes, which accounted for 87%
of the annual Castle Harbour metal variance. The first EOF was dominated by the
majority of the elements except Ba/Ca and Sr/Ca, where Sr/Ca was characterized by
negative eigenmode (as indicated by gray) but was dominant in the second EOF and
Ba/Ca dominated the third EOF.

Metal/Ca First EOF
54%

Second EOF
18%

Third EOF
15%

Cd/Ca 63.0 10.1 −8.0
Ba/Ca 1.2 19.9 73.7
Pb/Ca 64.6 12.5 −10. 6
Mn/Ca 80.6 −10.4 5.0
Fe/Ca 66.1 3.1 −0.01
Zn/Ca 84.3 −1.1 2.9
Sr/Ca −16.8 71.4 −1.1
The coupling of tides and winds can cause resuspension and trans-
port, where metals can change their desorption and binding forms
during long-term resuspension events, transforming them into more
bioavailable forms (Eggleton and Thomas, 2004). As described in a
study conducted on the Great Barrier Reef, periodic turbidity can
resuspend fine-grain sediment, depositing and adhering trace metals
to mucosal coral surface (Esslemont, 2000). While resuspension
events may be short lived, according to extrapolated results from a
laboratory-based erosion chamber, metals with strong peaks in re-
lease are an important contributor to the calculated annual sediment
metal load, releasing dissolved species to the overlying oxic water
(Kalnejais et al., 2010). The ecological effect of resuspended contam-
inated sediment in marine environments is complex (Roberts,
2012); however, the liberation of sediment-bound contaminates is
an important problem inminewaste managementwhere resuspension
and entrainment of sediment particles by wind-induced motions
(e.g., waves and currents) occur (see review by Eggleton and
Thomas, 2004).
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In shallow coastal waters, like CH, resuspension events can occur
frequently due to wind- and wave-induced bottom stresses. In contrast
to some studies linking rain to coral metal uptake (e.g., Ramos et al.,
2009), CH trace metal variability was not related to cumulative annual
precipitation, presumably given the lack of runoff on Bermuda. In con-
trast, the statistically significant relationship between southeasterly
wind speed (number of observations) and the first EOF at CH (Fig. 7)
supports the notion that wind-induced resuspension can lead to in-
creased availability of sediment-bound metals and subsequent coral
metal assimilation. According to theoretical bed shear stress calculations
(assuming silt-sized carbonate sediment, Nielsen, 1992) and only 5 km
of fetch, winds in excess of 30 m/s are needed to exceed the critical
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shear stress to cause resuspension in CH at a depth of 4 m (Walton,
2002), suggesting that resuspension from the adjacent seabed is likely
not a significant contributor to metals in the corals. Although the
observed winds were not sufficient to resuspend seabed material at a
depth of 4 m, the winds were sufficient to resuspend material at much
shallower depths closer to shore near the dump, and in conjunction
with wind-driven currents, advect the resuspended sediment to CH
due to the slow settling velocity of the fine-grained material. Additional



Table 3
Percent of variance associated with the first three EOF modes, which accounted for 63%
of the total John Smith's Bay metal variance. The first EOF was dominated by the major-
ity of the elements except Ba/Ca and Sr/Ca, where both elements were characterized by
negative eigenmodes (as indicated by gray) but were dominant in the second EOF.

Metal/Ca First EOF
35%

Second EOF
17%

Third EOF
11%

Cd/Ca 64.7 −0.04 −10.49
Ba/Ca −6.6 55.13 28.86
Pb/Ca 37.3 3.38 −0.11
Mn/Ca 37.1 −3.71 14.72
Fe/Ca 27.0 −11.88 8.50
Cu/Ca 40.8 6.87 0.11
Zn/Ca 55.8 0.79 −20.50
Sr/Ca −8.7 57.75 −6.47
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factors, such as storms and changes in sea level may also need to be
considered. The number of days when sea level barometric pressure
(an indicator of storms) dropped below 990 mb between 1975 and
2005 was 16, according to NCDC meteorological data. However, these
episodic storm events have the potential to mobilize contaminants
bound to sediments from the dump when waves several meters high
hit the outer wall of the dump, composed of rubble, scrap metal, and
ash blocks starting in the mid 1990s.

Previous work suggests that landfill seawater levels rise and fall in
synchrony with the external tide (Chapman, 2008), such that the
corals are periodically bathed in black water coming from the landfill
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(Fig. 1D) versus more pristine Atlantic Gyre seawater. Because the
southern edge of the landfill is semi-submerged in the waters of CH,
periodic leaching by changes in sea level may contribute to elevated
trace metal concentrations in CH. Mean sea level range measured at
the Bermuda Biological Station, was 76 cm (NOAA station 2695540).
This range is superimposed on interannual variability. Changes in sea
level due to tides may also be modulated by interannual oscillation
patterns in relative sea level height (RSLH). For example, interannual
variability displaying periods of 3 to 8 yrs has been detected in the
Atlantic RSLH data (Unal and Ghil, 1995). This interannual signal is con-
sistent with the spectral behavior observed in the CH data with the first
EOF displaying a broadMTMspectrum centered at approximately 4 yrs.
Export and percolation of contaminants emanating from the landfill
may therefore be enhanced during interannual sea level changes.
Therefore, the interannual CH coral record may reflect interannual
changes in local sea level. The lack of chronic, as opposed to periodic,
exposure helps explain the observation that growth rates at CH are
elevated relative to those measured in the open ocean at JSB, with
little indication that coral growth in CH is impeded despite nearby
contamination.

4.2. John Smith's Bay

Trace metal composition of suspended particles in the water
column near Bermuda has been linked to both natural and anthropo-
genic sources including eolian fluxes and advected lithogenic sources
(Sherrell and Boyle, 1992; Prospero et al., 1996; Huang and Conte,
2009; Kelly et al., 2009). For example, elevated JSB Fe concentrations
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may reflect aerosol deposition, which has been shown to contribute a
biologically important constituent of seawater Fe near Bermuda
(Mackey et al., 2012). However, the overall lower trace metal con-
centrations compared to both CH coral and sediment values suggest
that JSB is not exposed to contaminants associated with land-based
activities. Instead, large scale convective mixing may be driving
interannual metal variability in the JSB record. Though thermocline
mixing was not evident in a record of radiocarbon variability from
the JSB coral (Goodkin et al., 2012), seasonal overturning and convec-
tive mixing, when the mixed-layer depth (MLD) reaches 160–200 m,
can cause the nutricline to breach and entrain nutrients into the eupho-
tic zone in the western Sargasso Sea (e.g., Copin-Montégut and Avril,
1993; Hansell and Carlson, 2001; Michaels and Knap, 1996). The effects
of deep mixing during the winter are reflected in elevated nitrate con-
centrations in the surface layer (Goericke and Welschmeyer, 1998).

In most years in the Sargasso Sea near Bermuda, cold, dry winter
air that forces convective cooling of surface water is sufficient to induce
mixing into nutrient-rich waters at 100 m depth (Lipschultz et al.,
2002). In particular, during a negative NAO phase when winter storms
are more severe and storm tracks are further to the south, mixing is
enhanced and responsible for delivery of cold, nutrient-rich waters
to the oligotrophic surface waters in the subtropical gyre, potentially
enhancing metal concentrations to the coral reefs. As a result,
NAO-related variability plays a role in modulating interannual bio-
geochemical variability in the surface ocean surrounding Bermuda
(Bates, 2001; Oschlies, 2001). The interdecadal frequency observed in
the JSB record (Fig. 6A) is also consistent with NAO behavior and can
help explain the inverse relationship (r = −0.35; p ≤ 0.05) between
the NAO and the first EOF from JSB record after 1900. Likewise, during
positive phases of the NAO, the water column is well stratified and sur-
face waters are nutrient depleted, thus reducing the delivery of trace
metals to the surface waters surrounding the JSB coral site.
5. Conclusions

Among coastal systems, coral reefs are thought to be especially
susceptible to the amount of sediment provided by anthropogenic ac-
tivities (Smith and Buddemeier, 1992). In Bermuda, Castle Harbour's
history of dredging and landfilling has been linked to increase leaching
of contaminants intowater, sediment, andmarine tissue samples. Results
from this study expand the environmental assessment of impacts from
landfill leaching on the marine environmental by quantitatively demon-
strating elevated metal uptake in corals growing in CH. Relative to the
JSB coral, CH coral Pb, Zn, Mn and Hg concentrations were elevated, in
concertwithprevious studies reporting elevated tracemetals in sediment
and water samples near the landfill. The CH record does not reveal a
long-term trend. Instead, coral metal variability appears to be dominated
by export of contaminants triggered by periodic input. Elevated contam-
inants in the surrounding sediment suggest that resuspension is an
important transport medium for transferring heavy metals to corals,
with increased winds accompanied by higher coral variability at CH.
Coupled with wind-induced resuspension, changes in sea level can en-
hance export and percolation of contaminants emanating from the land-
fill. The interplay of natural processeswith land-based human activities is
critical to evaluating the potential environmental impact of near shore
contamination. The temporal and spatial comparisons between the CH
and JSB coral records highlight the need to understand these combined
effects and their impacts on coral record interpretation and ultimately
coral health.
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