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Observed morphodynamic changes over multiple decades were coupled with storm-driven run-up characteris-
tics at Fire Island, New York, to explore the influence of wave processes relative to the impacts of other coastal
change drivers on the near-term evolution of the barrier island. Historical topography was generated from digital
stereo-photogrammetry and compared with more recent lidar surveys to quantify near-term (decadal)
morphodynamic changes to the beach and primary dune system between the years 1969, 1999, and 2009. Nota-
bly increased profile volumes were observed along the entirety of the island in 1999, and likely provide the eolian
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source for the steady dune crest progradation observed over the relatively quiescent decade that followed. Per-
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morphology change island morphology, human activity, and variations in offshore bathymetry and island orientation that influence
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bayside marsh development show substantial landward translation of the dune-beach profile over the
near-term period of this study. Correlations among areas predicted to overwash, observed elevation changes
of the dune crestline, and observed instances of overwash in undeveloped segments of the barrier island verify
that overwash locations can be accurately predicted in undeveloped segments of coast. In fact, an assessment
of 2012 aerial imagery collected after Hurricane Sandy confirms that overwash occurred at the majority of
near-term locations persistently predicted to overwash. In addition to the storm wave climate, factors related
to variations within the geologic framework which in turn influence island orientation, offshore slope, and sed-
iment supply impact island behavior on near-term timescales.
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example, the alongshore wave climate, particularly as driven by major
storms, can shape the behavior and morphology of a dunes and beaches

1. Introduction

Natural and anthropogenically-induced drivers of change contribute
to the long-term evolution of coastal environments over a range of
timescales (Harris et al., 2005). Short-term (events, seasons, years)
changes are commonly studied to evaluate their immediate impacts
on coastal regions, whereas near-term (decades, half centuries) assess-
ments can provide essential information on the morphodynamics of
coastal evolution (Morton and Miller, 2005; Hapke et al, 2006;
Backstrom et al., 2007; Hapke et al., 2010a). Once behaviors and trends
are quantified, identifying the relative importance of drivers and con-
trols responsible for change-storm events, human influences, sediment
inputs, and geologic framework expressions-aids in anticipating future
vulnerable areas and guiding decision-making in coastal regions. For
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by focusing overwash through repeat events, thereby creating areas
more vulnerable to dramatic change (Sallenger, 2000; Stockdon et al.,
2007). Similarly, the geologic framework-the morphology, antecedent
geology and underlying stratigraphy-of a coastal system has been
linked to the presence of nearshore features and longer-term expres-
sions of shoreline variations in a number of coastal regions (Schwab et
al., 2000; McNinch, 2004; Harris et al., 2005; Browder and McNinch,
2006; Schupp et al., 2006; Houser et al., 2008; Hapke et al., 2010b;
Houser, 2012). Anthropogenic modifications to dunes and beaches,
such as beach replenishment, increase the elevation, grade, and width
of a beach, though their impacts on morphologic behavior are often
poorly understood (Thornton et al., 2006; Park et al., 2009). The primary
objective of this paper is to explore the dominant controls of
system-wide dune-beach morphologic changes on decadal timescales.
To accomplish this goal, near-term morphologic changes are quantified
and examined relative to several known drivers of coastal evolution and
behavior, among them: the wave climate, the geologic framework, and
ongoing replenishment activities.
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A paucity of detailed historical topographic datasets commonly pre-
vents assessment of long-term morphologic change; therefore, historical
coastal change is commonly assessed from shoreline datasets derived
from maps, features extracted from aerial photos and widely-spaced
beach profiles. However, historical surfaces can be generated with digital
stereo-photogrammetry resulting in high-resolution three-dimensional
(3D) datasets with continuous spatial coverage that can be directly com-
pared with more recent (lidar) surfaces to gain a better understanding of
3D morphology change over decadal timescales (Judge and Overton,
2001; Hapke and Richmond, 2002; Hapke, 2005). The research
presented here integrates photogrammetrically-derived historical
topography and recent lidar datasets to examine morphologic change
to the dune-beach system along the length Fire Island, New York. The
topography is used to assess decadal-scale morphodynamics and
changes on the barrier island from 1969 to 2009.

The 40-year span of topographic data presented in this study, which
brackets a number of major storm events, has been coupled with
30 years of wave information to discern the influence of storm events,
wave energy, and alongshore morphologic variation on the near-term
evolution of a barrier island dune-beach system. Change is quantified
specifically by: 1) determining subaerial volume changes through
time; 2) measuring the alongshore changes, net movement, and corre-
lations of features such as the dune crest position and elevation, shore-
line position, width of the beach, and the subaerial cross-shore profile
volume; and 3) evaluating these metrics in conjunction with parame-
terized wave run-up. The results are compared with existing theories
on the influence of the geologic framework and anthropogenic modifi-
cations to gain greater insight into the near-term coastal behavior and
response of barrier island systems.

2. Regional setting

Fire Island is centrally located in a barrier system that spans the
south shore of the Long Island, New York (Fig. 1). The 50-km barrier
island is oriented east-northeast, and the predominant southerly wave
direction drives net longshore transport from the east to the west
(Taney, 1961). Longshore transport is thought to be the dominant
mechanism by which sediment moves into and through the system at
Fire Island; there are no riverine sources, and limited understanding
of cross shore transport volumes, timescales, and mechanisms exists
(Schwab et al, 2000; Hapke et al., 2010b). Two engineered inlets
bound the island and are maintained for navigation purposes: Moriches
Inlet to the east, and Fire Island Inlet to the west (Fig. 1). Mean tidal
range in the microtidal region is 1.3 m (NOAA, 2010).

The subaerial morphology of Fire Island is variable along coast. Gen-
erally, relatively narrow beaches and high dunes (some as tall as 11 m)
characterize the central-eastern segment of the island, whereas wider
beaches and lower dunes (averaging 4.5 m) are found to the west as ob-
served in lidar from 1999 and 20009. Evidence of rapid spit growth to the
west is observable in recurved dune ridges and in the historical shore-
line record (Leatherman, 1985; Allen et al., 2002); from the time of con-
struction of the Fire Island Lighthouse in 1830 to the emplacement of
the inlet jetty at Democrat Point in 1942, the island grew more than
8 km westward (Kassner and Black, 1983; Psuty et al., 2005a) (Fig. 1).
Some of the oldest and tallest dunes on the island, located between
Sailor's Haven and Watch Hill, are thought to compose an ancestral bar-
rier core (Leatherman, 1985; Leatherman and Allen, 1985; Psuty et al.,
20053, 2005b) (Fig. 1). Leatherman (1985) documented a number of his-
toric inlets on the eastern reach of the island as evidenced by core logs,
interruptions in the dune crest, and recurved dune ridges. The eastern
reach of the island (roughly from Watch Hill to Moriches Inlet) exhibits
more consistent landward migration patterns than the western reach
with a wide flat back barrier marsh system; in fact there is no evidence
of sustained breaches or inlet formation west of Watch Hill. Inlets carry
sediment from the ocean to the back barrier to sustain the marsh

system, and are thought to be more important than overwash in land-
ward migration patterns at Fire Island (Leatherman, 1985, 1989).

In the late 1990s an extensive offshore mapping effort was conducted
through a joint partnership between the U.S. Geological Survey and U.S.
Army Corps of Engineers along the Long Island south shore inner-
continental shelf (Schwab et al., 2000). The comprehensive data collec-
tion of single-channel bathymetry, sidescan sonar, and subbottom profil-
ing shows a relatively thin veneer of modern sediment uncomformably
overlying a Holocene marine transgressive (ravinement) surface along
the inner shelf. In 2011, the U.S. Geological Survey conducted another
geophysical survey over the inner continental shelf and lower shoreface
of Fire Island, using higher resolution marine geophysical systems includ-
ing interferometric swath-bathymetry and backscatter, and chirp seismic
reflection profiles (Schwab et al,, in press). These new bathymetry data
are shown in Fig. 1. Preliminary analysis of these new data shows what
was initially thought by Schwab et al. (2000) to be a submerged Creta-
ceous headland located offshore of Watch Hill, is in fact a lobe of Pleisto-
cene outwash sediment (Schwab et al., in press). Erosion of this lobe of
glaciofluvial sediment via oceanographic processes associated with Holo-
cene marine transgression has supplied abundant well-sorted medium-
to fine-grained sand to the inner-continental shelf downdrift to the
west, which has been in turn reworked forming a series of
shoreface-attached sand ridges west of Watch Hill (Schwab et al., 2000).
Schwab et al. (2000) proposed that onshore flux of sediment from these
ridges may be supplying the sediment volume required for maintenance
of island stability west of Watch Hill and is a likely explanation for the
observed historic spit growth west of Point O' Woods and related modern
infilling of Fire Island Inlet. East of Watch Hill, the modern reworked sed-
iment deposit is relatively thin or absent on the inner continental shelf
and lower shoreface (Fig. 1). Here, the only sediment available to supply
the island is from updrift erosion and the relatively coarse-grained, less
mobile Pleistocene material offshore, thus the barrier island is migrating
landward at a relatively rapid rate (Schwab et al., 2000).

Nearshore (2-12 m water depth) single beam bathymetry surveys
in 2007 and 2009 show that the inner shelf ridges and axial troughs
are connected to the shoreface on the seaward side of the nearshore
bar (Hapke et al.,, 2010b). The ridges are composed of well-sorted me-
dium to fine-grained sand similar to Fire Island beach sand (Williams
and Meisburger, 1987; Williams and Morgan, 1993), and could be a
source of sediment to the system not currently quantified in existing
sediment budget estimates at Fire Island (Williams and Meisburger,
1987; Williams and Morgan, 1993; Schwab et al., 2000). In fact, all sed-
iment budgets conducted for the south shore of Long Island barrier
system to date estimate that an average of more sediment, approxi-
mately 200,000 m3/yr, is leaving the system at Fire Island Inlet than
is entering the system at Moriches Inlet (Taney, 1961; Kana, 1995;
Rosati et al., 1999; Hapke et al., 2010b). The lack of landward migration
along the western reach of the island supports the theory that along-
shore contributions from the ridges may serve as a sediment source
supplying the western reach with ample material to maintain position
and balance the system losses at Fire Island Inlet (Williams and
Meisburger, 1987; Williams and Morgan, 1993; Schwab et al., 2000;
Hapke et al., 2010b).

2.1. Storm history

During the time span considered in this study, a number of
extratropical storms (northeasters) and hurricanes made landfall at Fire
Island, resulting in elevated wave heights and periods. The extratropical
storms mostly occurred in the winter and early spring, between Decem-
ber and early March, with winds predominantly from the east and east
southeast as observed from NOAA buoy data (-buoy #44025 shown in
Fig. 1). Among these, three powerful northeasters made landfall on the
south shore of Long Island between October 1991 and March 1993. The
severity of the early 1990s' storms and their close temporal proximity
resulted in extensive coastal flooding, overwash, and erosion along Fire
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Fig. 1. Location map showing management regimes present at Fire Island and recent offshore bathymetry collected by USGS in 2011 (modified from Schwab et al,, in press). Inset

shows location of Fire Island with respect to the Long Island south shore.

Island. Significant wave heights (Hs) reached 9 m during the 1992 storm,
with water levels at a nearby tidal station (Sandy Hook, New Jersey) ele-
vated more than 2 m.

Several strong northeasters in the last decade have caused consid-
erable erosion on Fire Island, for example, “Nor'lda”, an extratropical
storm that formed from the remnants of Hurricane Ida in 2009. The
storm impacted Fire Island over a 3-day period from November 12
to 14, and removed and mobilized substantial amounts of sediment
that had been placed along the western reach of Fire Island as part
of a large replenishment project that was completed in April 2009
(Fig. 2).

2.2. Anthropogenic influences

Fire Island contains federal, state, and county parks, a federal wil-
derness area, and 17 private communities (Fig. 1). With the exception
of Robert Moses State Park on the western end of the island, all lie
within the boundary of Fire Island National Seashore (FIIS) where
the NPS manages many parcels of undeveloped land interspersed
with the communities, as well as the dunes and beaches fronting
both developed and undeveloped areas (Fig. 1). Although residents
own their property footprints, they are required to adhere to NPS reg-
ulations for any modifications to the beaches and dunes, which pro-
hibit the emplacement of hard engineering structures, and require
permitting for soft-engineering modifications such as beach scraping
and beach replenishment.

Engineered inlets on either side of Fire Island have been actively
maintained for more than 50 years. Due to continued accretion of mate-
rial in and around Fire Island Inlet, dredging and sediment bypassing
from east to west have been active since 1971 (Psuty et al., 2005a).
The stabilization of Moriches Inlet in 1952-53 resulted in increased

downdrift erosion along the eastern end of the island. To mitigate
these impacts, dredge material removed from the inlet for navigation
purposes was deposited on updrift and downdrift beaches adjacent to
the inlet. Accretion of downdrift Fire Island beaches appears to suggest
that the ebb tidal delta has reached capacity and natural sediment
bypassing is now taking place (Allen et al., 2002). Other than the inlet
jetties, the only other hardened structures on Fire Island are two groins
that were emplaced near Ocean Beach prior to the establishment of the
National Seashore in 1962.

Beach replenishment projects have been conducted intermittently
since the 1960s to help mitigate erosion threatening oceanfront homes
and infrastructure (Valverde et al, 1999; Keehn, 2004; Psuty et al,
2005a; CP&E, 2009). A history of beach replenishment and approximate
estimates of volumes emplaced on dunes and beaches is shown in Fig. 2.
Prior to the 1990s, sediment used in replenishment projects was
obtained from inland sources; since 1994, sediment used for beach
replenishment has been dominantly dredged from the adjacent inner
continental shelf. Offshore borrow pits are centrally visible in Fig. 1.
Smith Point County Park beaches on the easternmost end of the island
have been regularly replenished but dates and amounts of material asso-
ciated with these projects are poorly documented. The most recent
large-scale replenishment project on Fire Island was completed in the
spring of 2009, in which nearly 1.4 million m*® of material dredged
from the offshore sand ridges was emplaced on the dunes and beaches
fronting 11 communities in western and central Fire Island, as well as
Fire Island Pines and Davis Park (Fig. 2).

The erosion as well as extensive damage and loss of many homes at
Fire Island during the 1990s' storms prompted communities to imple-
ment beach scraping. Beach scraping is the transport of material from
the dry subaerial beach to the back of the beach to reconstruct or
enhance a primary dune. Kratzmann and Hapke (2012) make the case
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Fire Island Replenishment History: 1933-2012
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Fig. 2. Fire Island replenishment history showing approximate volumes and spatial locations of emplacement along shore. Data from Gravens et al., 1999.

that beach scraping has been shown to offer minimal short-term pro-
tection. However, scraping is typically conducted in some, if not many
communities annually, as the visible presence of scraped dunes pro-
vides a sense of security to residents whose homes are threatened by
erosion.

3. Materials and methods
3.1. Topographic surfaces

Historical topography was derived from 1969 aerial photography
(B&W, 1:12,000 scale). Using methods following Hapke and Richmond
(2002) and Hapke (2005), topography was generated from the digital
images (1200 dpi resolution) with stereo-photogrammetric software
(SocetSet 5.0). Ground control points to which the model was referenced
were extracted from a variety of stationary features identifiable in both
1969 and recent aerial imagery on the island including hard structures
(i.e. sidewalks, road intersections, bulk heads) in developed areas, and
distinctive features in undeveloped areas such as boulders, mosquito
ditches, and surge channel locations. Control point elevations were
acquired from 2002 lidar data. Once the model is spatially referenced,
the software enables the user to generate a Digital Terrain Model
(DTM) consisting of an extensive grid of XYZ points which can be man-
ually edited to remove structures such as homes and trees and ensure
model accuracy on the ground. Vertical root mean square errors
(RMSE) from the photogrammetric processing are reported in Hehre
and Hapke (2010) at 0.4 m (Table 1). Further detail regarding the pro-
cessing and validation of stereo photogrammetric models in the coastal
zone is well documented in the published literature (see Hapke, 2009;
Hapke and Richmond, 2000, 2002; Hapke, 2005). Triangulated irregular
network (TIN) surfaces were built from the XYZ DTM points. One-
meter resolution grids were then generated from the TIN surfaces

through natural neighbors interpolation, using methods described in
Lentz and Hapke (2011). Surface interpolation errors (RMSE) were
determined by removing 10% of the existing points, interpolating the
surface, and overlaying these points on the surface to gauge the accuracy
of the interpolation (Lentz and Hapke, 2011) (Table 1).

Lidar data from October 1999 and December 2009 were used to gen-
erate more recent topographic surfaces of the dunes and beaches on the
island. The 1999 dataset was collected with the NASA Airborne Topo-
graphic Mapper (ATM) sensor through a joint collaborative effort
between the U.S. Geological Survey (USGS), the NASA Observational
Sciences Branch, and the NOAA Coastal Services Center. The 2009 surface
was collected two weeks after Nor'lda by the USGS using the NASA
Experimental Advanced Airborne Research lidar (EAARL) laser scanner.
TINs and 1-m grids were generated from lidar point data for the 1999
and 2009 data. Collection error estimates are approximately 4+ 0.8 m
for the 1999 surface and + 0.3 for the 2009 surface in the horizontal
direction (Table 1). The vertical error for both the ATM and EAARL
systems is estimated at + 0.15 m (Sallenger et al., 2003; Nayeghandi
et al., 2011). To ensure that collection error estimates fell within a sub-
meter range, raw points from both lidar and photogrammetric surfaces
were directly assessed through a comparison with Real Time Kinematic
Global Positioning System (RTK GPS) point data. Grid elevations were
subtracted from true elevations on a stable surface (parking lot) and
averaged to determine the average per point collection error and stan-
dard deviation (Table 2). Of the points compared, the vertical error of
each surface fell within the range of estimated surface error, and the var-
iability in error among points in the same survey did not indicate system-
atic offsets within the datasets (Mitasova et al., 2009) (Table 2). Raw
point and surface interpolation errors (RMSE) were determined using
methods described above, and total root sum of the squares (RSS) was
used to estimate total error (Table 1) for each surface used in the
analysis.
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Table 1

Surface date, collection error, and interpolation accuracy assessments for 3D surfaces.
Collection and interpolation errors are combined to determine the total error specific
to each surface used in the analysis.

Surface Data Collection/ground Surface Total error
date type control error (m) accuracy (RSS*™) (m)
Horizontal Vertical (RMSE?) (m) Horizontal Vertical

March 28, Aerial + 03 +023 £02 + 19 + 04
1969 imagery

October Lidar + 0.8 +015 +£05 + 0.8 + 0.5
21,1999

December Lidar + 0.3 +015 £02 + 03 + 0.3
4,2009

* Root mean square error.
** Square root of the sum of the squares.

3.2. Feature extraction

The crestlines and toes of the dunes were manually digitized from
each surface using elevation, hillshades, and slope maps in the lidar sur-
faces, and by examining the 3D displays of the historical aerial photos
draped over the 1969 surface. The high resolution of the datasets
makes manual delineation a viable method for these extractions. Due
to impacts of nourishment and beach scraping, the position of the pri-
mary dune crest and dune toe in many cases is farther seaward than
the natural crestline (see Psuty and Silveira, 2009). One objective of
this analysis is to quantify near-term modification impacts and to
explore the degree to which they may be influenced by wave run-up
as well as affect the near-term response of the system. The dune
crestlines delineated in this study for all time periods therefore reflect
and incorporate human alterations as well as natural variation. We
have quantified the positional uncertainty of these features following
Hapke et al. (2006, 2010a) using a quadrature summation of the total
horizontal error of the surface (Table 1) added to an estimated
user-digitizing uncertainty of 3.0 m. Therefore approximate uncer-
tainties of the dune crest and dune toe positions are as follows: 1969:
3.5 m; 1999: 3.1 m; and 2009: 3.0 m.

Datum-based lidar shorelines were manually digitized from lidar
surfaces using elevation contours following the Mean High Water
(MHW) line. The elevation determined for the shoreline is the opera-
tional MHW elevation of 0.46 m NAVD 88 (Weber et al., 2005). The
1969 historical shoreline, in contrast, was derived from photogrammet-
ric outputs. The proxy-based wet-dry or high water line (HWL) was
interpreted visually from the orthophotographs during photogrammet-
ric processing and used as an onshore breakline in the stereo-model. In
order to generate accurate elevation data from stereo-models near the
surf zone, a breakline was established to anchor the model where
wave run up and changing conditions could otherwise inhibit 3D visu-
alization. In order to determine an approximate elevation for the HWL
breakline, tide records for the region were acquired. Historical tide
records from Sandy Hook, NJ, and Montauk Point, NY indicate that for
the period of aerial photo collection (3/23/1969-3/28/1969), the

Table 2

Vertical errors for each surface determined by comparing “control points” (values of
eight parking lot control points from the averages of six RTK GPS surveys) against
raw point values in Lidar and photogrammetry prior to interpolation. “Test” point
elevations within a 4-m radius of the control points were subtracted and averaged to
determine the average per point elevation error and standard deviation.

Data source Date Average per Standard
point error (m) deviation (m)

RTK GPS 2007-2010 1.39* 0.28

Photogrammetry April 1969 0.21 0.14

Lidar October 1999 0.08 0.02

Lidar December 2009 0.05 0.05

* Average “control point” elevation using 48 parking lot measurements.

elevation of the predicted higher high tide approximates the MHW ele-
vation (Hehre and Hapke, 2010; NOAA, 2010). As a result of this finding,
the HWL was used as a proxy for MHW, and an elevation of 0.46 m
(NAVDS88) was applied to this feature (Hehre and Hapke, 2010). Similar
to the dune crest and dune toe, shoreline positional uncertainty was
determined by a using a quadrature summation of the total horizontal
error of each surface (Table 1) by an estimated user-digitizing uncer-
tainty of 1.0 m following Hapke and Reid (2007) Hapke et al. (2010a,
2010b) and is reported as follows: 1969: 2.1 m; 1999: 1.3 m; and
2009: 1.0 m.

3.3. Change assessments

To evaluate change of the along-shore features, the position and
positional change of each feature was assessed along cross-shore pro-
files spaced at 50-meter intervals. Metrics were extracted from each
topographic surface to evaluate: 1) net movement or translation of
the cross-shore profile; 2) areas influenced by overwash; and 3) sedi-
ment gains or losses along the profile to assess decadal and multi-
term change. Metrics tabulated for all years were used to determine
changes between time periods: 1969-1999 (T1); 1999-2009 (T2);
and 1969-2009 (T3). To assess net movement of the shoreline and
dune crest, cross-shore transects were generated using the Digital
Shoreline Analysis System (DSAS) (Thieler et al., 2005) and used to cal-
culate net movement over all periods of analysis. End point uncertainty
calculations in Hapke et al. (2010a) were applied to determine net dune
crest and shoreline movement uncertainty over each time period using
a quadrature summation of the feature uncertainty calculated for each
survey year in the respective period. This resulted in a dune crest posi-
tional uncertainty range of 4.3-4.6 m, and a shoreline positional uncer-
tainty range of 1.6-2.5 m. By extracting elevations from the position of
the 1969 dune crestline we were able to determine areas that may be
influenced by overwash; areas where elevations decreased may be
due to breaks in the dune crestline caused by overwash, and areas
where elevation remained more or less constant were not likely to
have overwashed. Vertical error of the dune crest elevation was deter-
mined by a summation in quadrature of the total vertical error of each
surface for the relevant period found in Table 1, resulting in an uncer-
tainty range of 0.5-0.6 m. Transects predicted to overwash two or
more times were converted to a KML file verified by a visual assessment
of overwash in eleven sets of historical aerial imagery from 1994 to
2009 available in Google Earth. Additional aerial imagery in the wake
of Hurricane Sandy was also posted to Google Earth during the writing
of this manuscript. As an additional point of inquiry, we compared those
transects persistently predicted to overwash in our study period with
observed areas of overwash after Sandy to assess whether near-term in-
formation may aide our understanding of future storm vulnerability to
the system.

In addition to positional and elevation changes, beach width and
profile volumes were used to evaluate how the dune-beach system
changed through time. Beach width is measured from the MHW shore-
line to the dune toe. Positional uncertainties of beach width were deter-
mined using similar quadrature summations of horizontal uncertainties
of shorelines and dune toes of the period, with a range of 4.6-5.3 m.
Profile volumes specific to each surface were estimated from the dune
crestline to the MHW shoreline using methods following Kratzmann
and Hapke (2012). Volume uncertainties (vertical uncertainty of the
profile for survey year * profile length) were calculated from a quadra-
ture summation of the surveys in the period, with an average range over
all periods of 24.3-38.6 m®/m. Statistical assessments were applied to
determine if: 1) spatial changes among features are correlated over
the entire span of coast (Pearson's Product-moment Correlation); and
2) significant differences exist among the features in the modified vs.
unmodified portions of the island (ANOVA). To determine indepen-
dence among transects, a Moran's I statistic was run. Moran's l identifies
spatial autocorrelation of a feature or metric (Legendre and Fortin,
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1989), in this case along coast. A strong positive relationship was found
due to a lack of independence at a distance of 250 m (or 5 transects at
50 m spacing); based on this, a reduced N (degrees of freedom) was
determined from the total number of transects (990) to be 198 and
was used in the ANOVA. Significance is determined at p < 0.05.

3.4. Wave run-up

The spatial variability of morphology change along the coast was
explored within the context of wave forcing, or more specifically,
the interaction of alongshore uniform waves with alongshore-varying
beach morphology. By modeling the storm wave run up (R;) for each
of the three datasets, we were able to identify locations along the
coast where total water levels (Ryign) would exceed the height of
the dunes (Dyign) during a storm event and result in overwash, fol-
lowing the storm impact scaling model of Sallenger (2000). Identify-
ing locations where overwash was likely to have occurred allowed us
to directly relate observations (dune crest elevation loss from the
1969 dune crest position) with the storm wave climate (predicted
overwash); identifying locations of persistent predicted overwash
(predicted overwash in more than one dataset) improved our under-
standing of the influence of the wave climate on near-term morphol-
ogy of the dune/beach system. It is important to note that although
the wave energy reaching the shoreline may be variable due to the dif-
ferences in offshore bathymetry, we fixed wave parameters alongshore
to provide a preliminary understanding of the morphologic influence of
total water elevation levels on the shoreline and how they may shape
the subaerial morphology response and behavior. Ry;g, was modeled
using parameterized R, coupled with tide and surge information as
outlined in Stockdon et al. (2006, 2007).

Following Stockdon et al. (2006), the R, parameterization model
requires the input of three variables: the deep water wave height
(Ho), wave period (Ty), and mean beach slope (B,). Pm Was averaged
along individual transects from the three sets of data (MHW to dune
toe) to represent typical spatial variation along coast. To identify rep-
resentative storm wave conditions of Hgorm and Tseorm for Fire Island,
we used a combination of observational and hindcast datasets to
obtain information about wave conditions during storm events at
Fire Island over the last 30 years. Observations of wave conditions
between 1991 and 2009 were obtained from the National Data Buoy
Center (NDBC) buoy station 44025 (Fig. 1). Because no observations
were available prior to 1991, hindcast Hs and T from 1980 to 1999
were acquired from the U.S. Army Corps Coastal Hydraulics Laboratory
Wave Information Studies (WIS) to supplement the record. Hs from
extreme storm periods in 1992 and 1999 were compared between
NDBC and WIS datasets to validate hindcast data (Fig. 3). The average
difference between the predicted and observed results was 0.12 m,
with a correlation of 0.8 (Fig. 4). Under-predicted hindcast Hs were
corrected based on the values of the regression equation (y =
0.73x + 0.21). With the correction applied, the WIS data provide
hindcasts of significant storm event parameters and were used in lieu
of observational data for the period 1980 to 1991. Although the wave
data do not extend over the entire period of the study, the length of
the record is assumed to be sufficiently long to represent average
wave climate and variations representative of conditions back to
1969. To determine a representative storm condition, the 2% exceed-
ance value for Hs (Hs,y)—the threshold of the highest 2% of the waves
based on the 30-year wave record—was used to identify and select
storm events (Hsorm = H > Hsyy). The 2% threshold value specific to
the earlier and stormier period (T1) (Fig. 4) was compared to the
later, less stormy period (T2) because in both cases these threshold
values were relatively close (4.2 m vs. 3.9 m), we elected to use an
average storm value to more generally explore storm activity on mor-
phology over the entire period. A mean Hgorm value of 4.1 (£ 0.8) m
was found for the 2% exceedance observations identified over
the 30-year period. The corresponding peak wave period (Tstom) for

the storm events was 10 (4 2) s. Along with 3m, these parameters (H-
storm aNd Tsiorm) Were input into the parameterization model and used
to calculate R,.

Rhigh Was estimated by adding R, to a representative storm-induced,
high water level (1)(t), a combination of astronomical tide and surge) of
2 m. 1(t) was calculated from the 10 highest events measured by the
open-coast tide gauge in Sandy Hook from January 1, 1969 through
December 31, 2009 relative to NAVD 88. Once determined, Ry;g, Was
compared to 1969, 1999, and 2009 dune crest and dune toe elevations
to identify areas predicted to overwash following the Sallenger (2000)
storm impact scaling model (Rpigh > Dhign) (Fig. 5). The persistence of
predicted overwash between each of the time periods was ranked on
a scale from 0 (no overwash predicted) to 3 (persistent overwash pre-
dicted in all three dates).

4. Results
4.1. All-island

Shoreline change, beach width change, and volume change results
show a mean accretional trend between 1969 and 1999 (T1), while
the period from 1999 to 2009 (T2) is dominated by erosion, particularly
in the eastern reach of the island (Table 3; Fig. 6). Comprehensive
Pearson's Product Moment (PPM) correlation results are reported in
Supplemental Materials (Tables S1 and S2), and show that these three
variables are strongly correlated in T2 (PPM > 0.7), particularly beach
width and volume (Fig. 7A). Dune crest position change is erosional
on average in T1 (—3.5 m), which is significantly different from its
mean accretional trend in T2 (6.7 m); dune crest position retreated in
the first 30 years of analysis, and has prograded substantially in the
most recent decade (Table 3; Fig. 6). Beach width change and dune
crest position change are inversely related in T1 (PPM of —0.5), show-
ing that where beaches accrete and widen, dunes tend to erode, where-
as in areas where beaches narrow, dunes tend to prograde, although
there is no relationship between these two features in T2.

Beach width and volume change are inversely correlated between
T1 and T2 (Fig. 7B), showing that areas of high aggradation lost sub-
stantial amounts in the decade to follow, and vice versa. An expected
correlation between beach width and volume change is shown in
both T1 and T2, however, showing that wider beaches have higher
volumes of sediment in the profile, whereas narrower beaches have
lower volumes of sediment in the profile (Table 3; Fig. 7B).

Dune crest and shoreline movement are strongly correlated
(PPM > 0.6) in T1 only (Fig. 7C), showing that over the long term,
changes related to these features parallel each other; in areas of shore-
line retreat, dune crestlines can be expected to retreat as well (Fig. 6).
Mean dune crest elevation is erosional in both time periods, showing
a steady lowering of the dune elevation through time (Table 3). Dune
crest elevation change and dune crest position change vs. overwash
potential are inversely related in T1 (PPM of —0.5; Fig. 7D), showing
that areas with high overwash potential show increased dune crest
elevation loss and positional retreat. Overwash potential is also strongly
correlated in both T1 and T2 (PPM of 0.9) showing that an area predict-
ed to overwash in one time period is highly likely to again.

Total change results from 1969 to 2009 (T3) (Fig. 8) trend toward
results from T1. Over the 40-year period, dune crest position and shore-
line change are very strongly correlated, as are beach width and volume
change (Fig. 7). More moderately correlated results (PPM of 0.5) from
this period show a relationship between: 1) dune crest elevation
change and shoreline position, and 2) dune crest elevation change and
dune crest position change; in areas of shoreline retreat, dune crestlines
tend to lose elevation and migrate landward. An inverse relationship
exists between overwash potential and dune crest position and dune
crest elevation (PPM of 0.5), showing that areas with high overwash
potential tend to show dune crestline retreat and dune crest elevation
loss. No relationship was observed between volume change or beach
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predicted values.

width and overwash potential over all time periods (PPM less than 0.3),
indicating that sediment is preserved in the profile.

4.2. Developed west vs. undeveloped areas east

Results show substantial differences in behavior along western vs.
eastern reaches of the island behavior, particularly in developed areas
to the west vs. undeveloped areas to the east. Additional correlations
were run on these sub-areas to determine whether trends were signif-
icant. To assess up drift and down drift development impacts, transects
either directly within or within 1 km of the borders of developed areas

were evaluated west of Watch Hill (401 transects; reduced N for
ANOVA of 83). All transects to the east of the easternmost transect in
the developed areas (424 transects; reduced N for ANOVA of 85) were
used to evaluate behavior of the eastern reach. Of the 990 transects
assessed, persistent overwash was predicted (overwash predicted in
all dataset years) at 83 transects, and overwash in two or more datasets
was predicted at 421 transects.

With the exception of dune crest elevation change, ANOVA results
showed average morphology changes between developed areas west
(D) and undeveloped areas east (U) are significantly different between
T1 vs. T2 and T2 vs. T3 (Table 3). Results also show significant differences
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Fig. 4. Significant wave height distributions for T1 (1969-1999) and T2 (1999-2009) showing NBDC and corrected WIS data. Vertical lines display 2% exceedance threshold values
for each period. Wave rose shows dominant direction of all 2% exceedence events as based on Hs.



132 E.E. Lentz et al. /| Marine Geology 337 (2013) 125-139

1 Communities
5 10 15 20

25 30 35 40 45 km

7 1969-2009 (T3)

1 12.3(39.2)

54 -1.4@2.4)

Change in Meters

-10 4
100
50 15.5(21.5)

-50 4

-100 -
400

2009 13.4(64.1)

m3/m
o

-200

-400 -

w
=)

Years OW
Predicted
o =D
o O O

o
-
o

20

Net Shoreline Movement

Net Dune Crest Movement

Dune Crest Elevation Change

Beach Width

Volume Change

Overwash Persistence

30 40 50

Distance Alongshore (km)

Fig. 5. Locations of predicted overwash along the coast for each dataset using the Stockdon et al. (2007) model and based on the Sallenger (2000) storm impact scale.

within time periods for shoreline movement, dune crest elevation,
and beach width change. Although average changes tend to parallel
each other, features that eroded in either time period eroded less in D
areas than U areas, and features that accreted in either time period
accreted more in D areas than U areas (Table 3). Total change (T3) results
differed significantly in dune crest elevation change (mean of — 0.6 m
in D and — 2.4 m in U), and in volume change (mean of 44.1 m>/m in
D and 0.2 m*/m in U) showing overall gains in D, whereas volume was
largely conserved, but not gained, in U (Table 3). Average dune crest
elevation showed minimal change in all three periods in D, and a steady
decline in U. Persistent overwash was equally as likely in D as in U. Out of
the 83 transects predicted to persistently overwash, 43 (52%) were in or
directly adjacent to developed areas; of the 421 transects predicted to
overwash in two or more periods, 254 (60%) were in U. Assessment of
Google Earth imagery in U verified that between 1994 and 2009, 83%
of those transects predicted to overwash in two or more periods
displayed evidence of overwash (surge channels, overwash fans). Inter-
estingly, in our comparison with aerial imagery taken a few days after
Hurricane Sandy in 2012, we were able to verify that 69% of the transects
predicted to overwash two or more times in our near-term study were

spatially correlated with overwash features in the post-storm period.
Similar aerial assessments were not completed in D due to the presence
of human modifications in these areas; such efforts are frequently
employed in a post-storm response to remove overwash material from
roadways, sidewalks, and yards, and combined with development at or
overlying the dune crestline, make visual observation of overwash fea-
tures far less straightforward.

Moderately strong correlations (PPM > 0.5) are present in U and not
in D for shoreline movement and dune crest movement (Fig. 7), and
dune crest elevation change and shoreline movement, indicating that
changes in shoreline position are more directly related to changes to
the dune in U over the long term (T1 and T3). Inverse relationships be-
tween overwash potential, shoreline change, and dune crest elevation
change over all periods were stronger in U than D (Tables 1S and 2S),
showing that areas likely to overwash in U are more likely those with
eroding shorelines and that are losing dune crest elevation through
time (Figs. 6 and 8).

Conversely, correlations between shoreline change and volume
change and beach width change were much stronger in D (PPM > 0.6)
than they were in U for all periods, and a strong inverse relationship
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Table 3

Mean values and standard deviations (parens) of feature changes along the coast. First
line shows change for the entire length of coast based on an independence threshold of
~250 m (every fifth transect or a reduced N of 198). West encompasses those transects
which directly cross or lie within 1 km of developed areas on the western reach
(~7 km); east encompasses those transects east of Watch Hill (~25 km). Due to engi-
neering influences around the inlets, these transects are not included in averages spe-
cific to eastern and western reaches.

Parameter measured 1969-1999 1999-2009 1969-2009
(T1) (T2) (T3)

Beach width change 30.6 (22.3) —15.2 (24.7) 15.5 (21.5)
West (D) 344 (162)*t  —7.7 (26.0) 26.7 (19.1)*
East (U) 32.0 (25.00f  —20.4 (21.9) 11.6 (17.8)

Net shoreline movement 19.7 (29.7) —7.6 (264) 12.3 (39.2)
West (D) 24.3 (19.4)** 0.8 (25.3) 25.1 (24.9)*
East (U) 17.1 (38.6)*F —127 (234) 49 (49.5)*

Net dune crestline movement —3.5 (34.2) 7 (13.4)* 2.9 (38.0)*
West (D) —5.7 (14.7)* (123)*+ 2.1 (16.6)*t
East (U) —7.8 (44.2)** 4(146)F  —3.4(50.0)*t

Volume change 73.9 (75.2) — 60 5 (75.4) 134 (64.1)
West (D) 921 (57.1)F  —47.9 (76.4)t  44.1 (49.7)
East (U) 69.3 (80.3)f —69.1 (66.3)F 0.2 (61.0)

Dune crest elevation change —1.2 (2.1)* —0.2(1.1) —14(24)*
West (D) —0.7 (1.8)* 0.1 (0.7)*t —06(1.8)*
East (U) —1.9(2.4) —05 (1.3)t —24(27)

* Mean values between West and East in columns not significantly different.
* Mean values in rows not significantly different.

emerged between volume change and dune crest position change over
the most recent decade. The strength of these relationships is important
to note in areas that are known to be actively replenished.

5. Discussion

Although a number of studies have examined and made interpreta-
tions about the coastal evolution of barrier island systems, this study is
the first to comprehensively quantify an array of near-term morpholog-
ic feature changes to the dune-beach system along the length of an
island with a range of human modifications, a diversity of management
practices, and well-documented variation of the inner shelf bathymetric
features and antecedent geology. By correlating the near-term wave cli-
mate with observations of morphology change, we are able to examine
and better isolate impacts related to other morphologic change drivers
that vary spatially and are heavily timescale dependent including:
1) anthropogenic modifications (replenishment); and 2) subaerial
sediment availability and the geologic framework (shoreface-attached
and -detached sand ridges, glacial outwash features, and island orienta-
tion). In this discussion, we assess the likely influence of these drivers,
coupled with wave processes, on near-term barrier island behavior
and evolution.

5.1. Replenishment impacts

Similar numbers of transects in eastern and western reaches at
Fire Island are predicted to overwash. However, the correlations
between transects likely to overwash and observed profile morphology
changes are stronger in the undeveloped eastern than the moderately
developed western reach. More than 50% of the transects predicted to
persistently overwash in the western reach were within or immediately
adjacent to developed areas. This may be a result of inaccuracies in the
predictions, but it is also likely due to ongoing anthropogenic modifica-
tions in the western areas which may prevent, rapidly erase, or mini-
mize event-driven impacts.

The data examined in this study (Figs. 6 and 8) show that sediment
volumes have increased in areas west of Watch Hill, where there has
been period replenishment, during the total period with limited shore-
line and dune crestline erosion (Fig. 9a-c). Temporal constraints of the
datasets make several events important to consider when interpreting
these results. Changes to the beach in T2 and T3 include the storm

impacts from Nor'lda; although some post-storm recovery is likely to
have occurred when the lidar survey was collected, it is unlikely that
the beach fully recovered in 2.5 weeks between the storm and the sur-
vey. Results also suggest that anthropogenic modifications, particularly
the 2009 replenishment, are exerting some influence on the post-storm
morphology of the western reach; in T2 net shoreline movement and
beach width change in the western reach are significantly different
from those in the eastern reach. Both the shoreline and beach width
are the most likely features to be impacted by replenishment. Addition-
ally, it is notable that, on average, dune crestlines and shorelines
prograded in the western developed areas whereas they did not in
undeveloped areas. Overall, volume and beach width changes experi-
enced half the losses observed in undeveloped areas over nearly all
time periods. Over the 40-year period (T3), dune crest elevation changes
in the western reach are generally negligible, and dune crest positions
have accreted through time; that the dune retains form despite persis-
tent vulnerability to overwash in many locations may be due to human
maintenance of the profile via replenishment and beach scraping
(Figs. 9a-c).

Although coastal structures and development have been shown to
contribute to vulnerability at Fire Island by restricting eolian transport,
thereby restricting the growth and migration dunes which serve as natu-
ral storm buffers (Nordstrom and McCluskey, 1985), the dunes fronting
many of these developed areas are actually located seaward of the natu-
ral dune feature in order to protect homes (Psuty and Silveira, 2009).
Dune construction and position (lower in elevation, less compacted,
and farther seaward than natural features), make them both purposefully
vulnerable to storms and easily rebuilt. Because dune crestline retreat
and elevation loss have been limited by human activities in the coastal
communities in western Fire Island, the beach and dune system appears
more morphologically stable than areas further east. However, the
inverse relationship between dune crest position change (dominantly
progradation) and volume change (dominantly erosion) in developed
areas over the most recent decade (T2) may suggest that the profile,
which has been artificially translated seaward from replenishment
and scraping, is more prone to volume loss (Figs. 9a-c).

5.2. Sediment availability and the geologic framework

The physiography of the inner-continental shelf offshore of Fire
Island is an expression of antecedent geology and oceanographic pro-
cesses associated with marine transgression (Schwab et al., 2000). The
inner-continental shelf can be separated into two physiographic seg-
ments. A slightly steeper gradient shelf lies to the east and a slightly
gentler shelf to the west blanketed by a series of shoreface-attached
sand ridges. The segments are separated by a submerged headland
composed of Pleistocene glaciofluvial sediment off central Fire Island,
an outwash lobe (Schwab et al., in press). A number of recent studies
have observed offshore controls on shoreline behavior, dune configura-
tion, and nearshore morphology (Riggs et al, 1995; McNinch, 2004;
Harris et al., 2005; Browder and McNinch, 2006; Schupp et al., 2006;
Hapke et al., 2010b; Houser, 2012). Schwab et al. (in press) make the
case that long-term shoreline change rates at Fire Island are likely
linked with inner shelf features and bathymetry. The array of subaerial
morphology changes quantified in this study over the 30 and 40-year
periods at Fire Island show different migration rates and behaviors be-
tween eastern and western reaches of the island, suggesting that the
inner-shelf geologic framework is likely an important control on
near-term barrier island evolution, both in terms of sediment availabil-
ity along the coast and in influencing the wave climate.

The shift in island orientation from east (northeast-southwest) to
west (more east-west) at approximately the location of Watch Hill
(Fig. 1), coupled with the predominant easterly direction of the most
intense storm waves (Fig. 4) and differences in offshore slope gradients,
are important factors to consider in the measured morphologic differ-
ences between the east and west reaches of Fire Island. Although this
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study was limited in scope to focus on morphologic response to a gener-
ic storm and wave climate, it is likely that major storms, which tend to
have a dominant wave propagation from the east and southeast (Fig. 4),
coupled with the more southeast facing eastern reach of the island and
steeper shelf result in stronger and higher waves impacting onshore
areas east of Watch Hill. In addition, many have suggested that the
ridge and trough system found as part of the inner continental shelf
framework off western Fire Island (Fig. 1) may be serving as a source
of sediment to the system west of Watch Hill, as well as helping to
focus wave energy along segments of coast coincident to the ridge fea-
tures (Williams and Meisburger, 1987; Schwab et al., 2000; Hapke et al.,
2010b). In fact, Batten (2003) found that a more dissipative shoreface
profile along the western reach of the island may help to reduce
storm vulnerability by diminishing wave energy as it reaches the shore-
line; conversely the steeper offshore slope and subaerial profile config-
uration may increase storm vulnerability in the eastern reach (Schwab
et al,, 2000; Batten, 2003; Hapke et al., 2010b). Future modeling efforts
that take into account alongshore wave variability may better reflect
these offshore dynamics, however, the morphologic changes quantified

in this study support current theories as to the relationship between the
offshore ridge system and landward migration of Fire Island.

The remains of a relatively younger ~6-m-thick lobe of Pleistocene
glaciofluvial sediment associated with the submerged headland crops
out at the seafloor offshore of Watch Hill in water depths of ~12-16 m
(Schwab et al,, in press). Figs. 6 and 8 show an overall lack of predicted
overwash, limited dune crest movement and elevation change at 26
and 29 km alongshore, and Fig. 9d shows limited landward profile trans-
lation in this location likely related to the occurrence of this younger
lobe. Here, the modern Holocene beach wedge can be seen perched on
top of the younger outwash lobe (Schwab et al., in press) which we spec-
ulate provides a buffer to erosion, island breaching, and landward migra-
tion of the more mobile, modern beach wedge. High dunes and abundant
beach sediment spatially correspond with the inflection point (change in
orientation) of the island (Figs. 5, 6 and 8). Barrier islands have been
found to display variable migration patterns where submerged head-
lands modify wave and current patterns offshore (Riggs et al,, 1995),
and it is likely that the Pleistocene lobe offshore of Fire Island is having
a similar effect. In fact, the area immediately east of the inflection point
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is the portion of the island showing the least erosion of any segment
along coast (Figs. 6 and 8 at distances of ~25 km alongshore).

Farther east, where dunes are generally smaller, sediment supply is
limited, and the offshore physiography is different, the island is more
vulnerable to storm-induced erosion and overwash. The eastern reach
of Fire Island shows a pronounced landward translation of the dune-
beach profile (verified through selected profiles), which in some in-
stances show the shoreline of the most recent profile (2009) is nearly
landward of the dune crestline of the oldest profile (1969) (Fig. 9e).
The eastern reach is where Leatherman (1985) identified a number of
former inlets over the last 300 years, and attributed landward migra-
tion of the eastern reach primarily to inlet processes transporting sedi-
ment to the backbarrier. According to his findings, nearly 85% of the
island has been prone to inlet activity, resulting in island widening at
former inlet locations and facilitating landward migration, particularly
in the eastern reach. Our results show that average losses of dune
crest elevation and landward shifts of the dune crest position are
strongly correlated in undeveloped areas predicted to and in many
cases observed to overwash during storm events. Limited volume and
beach width changes in the eastern reach suggest that the overall pro-
file configuration is conserved over the near-term as it moves landward
(Fig. 9e). These results echo those proposed in the conceptual profile
translation model by Davidson-Arnott (2005), which theorizes that
dune volume is conserved as the sediment eroded from the dune is car-
ried landward, allowing the feature to largely retain its overall shape
and appearance. Although the importance of inlets must be acknowl-
edged, these results speak to the importance of overwash on morphol-
ogy change and island-migration.

In addition to the geologic framework, subaerial sediment availabil-
ity has likely influenced dune/beach morphology changes in the most
recent decade of analysis. Inverse relationships between volume gains
in 1969-1999 and losses in 1999-2009, demonstrate that the volume
along the length of the island was noticeably higher in the period
around 1999 when compared with those of 1969 and 2009. Although
the source is unclear, we suspect that the influx of sediment is due to
a relatively quiescent weather period, thereby allowing beaches to
build gradually over time. The strong correlation between changes in
shoreline position, beach width and volume results show that sediment
losses occurred along most of the beaches during the latter decade of
the study, however, the net progradation of the dune crestline suggests
that some of the beach sediment may have been transported to dunes in
this period through eolian processes. Short and Hesp (1982) observed
that dissipative beaches have the highest eolian sediment transport
rates where transgressive dune sheets are often found, and Houser
and Mathew (2011) argue that sediment availability rather than trans-
port potential governs dune development on dissipative beaches. For
Fire Island, Iribarren numbers calculated for all three datasets based
on beach slope show that the volumetrically-increased and wide-
beach period in 1999 at Fire Island resulted in a distinctly more dissipa-
tive profile than the other periods (0.2 in 1999 vs. 0.4-0.5 in 1969 and
2009) with abundant sand for eolian transport and deposition. This
may have allowed for an overall transgression of the foredune system
alongshore. These results show that in addition to overwash, elevation-
building appears to be an important process in near-term island migra-
tion. Similar to the conceptual model of landward migration in response
to the effects of sea level rise proposed by Davidson-Arnott (2005), the
displacement of the dunes and beaches in the eastern reach of Fire Island
suggests an upward and landward migration of the subaerial and near-
shore profile. Our findings show that there is a strong correlation
between overwash vulnerability and profile retreat along eastern Fire
Island, which support that overwash and eolian transport processes con-
tribute to the landward elevation-building necessary for sustained island
migration.

It is also of note that changes observed over 10 and 30-year periods
appear to mirror each other, similar to the reversing storm beach
hotspots observed by List et al. (2006), although in this case, the earlier

period represents one of recovery, whereas the most recent decade
reflects post-storm loss. Hapke et al. (2007) documented inverse cells
of erosion and accretion that migrated seasonally along coast at Fire Is-
land. However, linear regression rates of shoreline surveys collected
over a variety of seasons documented by Lentz and Hapke (2011) in
eastern and western study sites between quiescent (1998-2002) and
stormy periods (2002-2008) also show similar inverse trends without
alongshore migration. Due to the seasonal differences and temporal
paucity of our datasets, it is difficult to discern whether observed
inverse differences between T1 and T2 are due to stormy and less
stormy periods or individual events and seasons, though the limited
alongshore migration of these features suggests, based on previous
work, that behavior in the most recent decade is attributable to a period
of relative calm.

Areas of predicted overwash appear to be associated with the severe
storms in the early 1990s. Aerial photos from 1994 show extensive
overwash and dune erosion along the length of the island, suggesting
that the intensity, duration, and temporal density of these storms
(astorm every year for three years) is likely to have amplified landward
migration of the sediment-starved eastern reach of the island. The lon-
ger time scales of our analysis do not allow for assessment of specific
storm impacts; however, in contrast to the losses of volume, beach
width, and shoreline position, the laterally continuous progradation of
the dune crest position along the entire length of coast over T2 suggests
alonger term building of the primary dune system, perhaps in the wake
of the early 1990s' storms. It is also of note that 69% of transects persis-
tently predicted to overwash in the near term also overwashed during
Hurricane Sandy, suggesting that the vulnerability of the near-term sys-
tem can be linked with event-driven change, and may be used to antic-
ipate impacts of future storms at specific locations along the coast. If the
near-term changes in the eastern reach of Fire Island are largely attrib-
utable to the early 1990s' storms as suggested here, the impacts of
event-scale occurrences must be considered important drivers of barri-
er island response and evolution. Should the frequency and intensity of
such extreme storms increase in the future, as anticipated in response to
climate change, near-term assessments may not only help to spatially
anticipate areas of vulnerability, but also to understand where cumula-
tive impacts may serve to accelerate barrier island evolution.

6. Conclusions

Multi-decadal morphologic changes to dunes and beaches were
quantified at Fire Island using digital elevation models derived from
recent lidar surveys and historical aerial photography. Modeled wave
run-up was coupled with variations in morphologic features and
change to determine the potential impact of storm events the dunes
and beach. Our results reinforce the concept that near-term barrier evo-
lution is in part a function of geologic framework and variations in the
sediment budget, as demonstrated by differences in behavior of the
eastern versus western reaches of Fire Island. We extend this concept
to explore variations in the morphology of the cross shore profile and
examine the spatial influences of wave climate, human modifications,
and the geologic framework on decadal timescales and longer.

Whereas the long-term landward migration of the eastern reach is
well established, we found that conservation of volume and a rapid
rate of profile translation that suggests overwash is a more dynamic
and active process driving landward migration along Fire Island in
the near-term than previously suggested. We propose that a propen-
sity for landward migration of the profile on the eastern reach of the
island versus the western and central reaches is related to variations
in the wave climate due to differences in offshore bathymetry, as well
as storm response and recovery. In fact, verification of overwash fea-
tures in eastern areas persistently predicted to overwash shows that
near-term morphologic change assessments can provide important
information as to the current and future spatial response of the sys-
tem to a general storm wave climate. Although we also found that
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the western portion of the island is predicted to be vulnerable to
overwash, we measured less landward translation of the profile,
particularly in the areas fronting development, therefore the storm
wave climate appears to have less influence on this portion of the
island than to the east. This suggests that human modifications in con-
junction with the dominant framework controls lead to a more stable
profile along western Fire Island. Furthermore, the difficulty in verifying
instances of overwash in heavily modified areas is due to development,
beach replenishment, and scraping complicating overwash signatures.
In addition to change among the two reaches, we observed island-long
progradation of the dune crestline over the most recent decade of
analysis, despite sediment losses on the beaches affiliated with several
large storms of the 2000s. The dune crest progradation is documented
in both developed and undeveloped areas in the more recent time
period investigated, and is likely due to re-equilibration of the system
following the extreme storms of the early 1990s.

This study demonstrates that quantifying an array of near-term pat-
terns of morphology change and linking these with the storm-wave
climate, even with temporally sparse datasets, can provide valuable

insights into the influence of anthropogenic modifications, storm events,
geomorphology, and the geologic framework on coastal change and
evolution essential to forecasting behavior and future planning.
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.margeo.2013.02.004.
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