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Abstract 

 The odor-induced population response in the in vivo turtle (Terepene sp.) olfactory bulb consists of 

three oscillatory components (rostral, middle, and caudal) that ride on top of a DC signal. In an initial step to 

determine the functional role of these four signals, we compared the signals elicited by different odorants. Most 

experiments compared isoamyl acetate and cineole; odorants which have a very different maps of input to 

olfactory bulb glomeruli in the turtle and a different perceptual quality for humans. 

 We found substantial differences in the response to the two odors in the rise-time of the DC signal and 

in the latency of the middle oscillation. The rate of rise for cineole was twice as fast as that for isoamyl acetate. 

Similarly, the latency for the middle oscillation was about twice as long for isoamyl acetate as it was for cineole.  

 On the other hand, a number of characteristics of the signals were not substantially different for the two 

odorants. These included the latency of the rostral and caudal oscillation, the frequency and envelope of all 

three oscillations and their locations and spatial extents. A smaller number of experiments were carried out 

with hexanone and hexanal; the oscillations elicited by these odorants did not appear to be different from those 

elicited by isoamyl acetate and cineole.  

 Qualitative differences between the oscillations in the turtle and those in two invertebrate phyla suggest 

that different odor processing strategies may be used.  
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 Following their discovery by Adrian (1942), odor stimuli have been shown to elicit or alter oscillatory 

events in the olfactory bulb in all species tested (e.g. Ottoson, 1959;  Hughes & Mazurowski, 1962; Beuerman, 

1975;  Laurent & Naraghi, 1994, Dorries and Kauer, 2000). Using voltage-sensitive dye imaging, we found that 

the odorant-induced response in the olfactory bulb of the turtle actually consisted of four signals, three 

oscillations, named rostral, middle and caudal according to their location in the bulb, and a DC signal (Lam et 

al., 2000). The DC signal (Kauer, Senseman & Cohen, 1987; Kauer, 1988), which occurs over the whole area 

of the bulb, has the shortest latency and lasts the longest. We carried out experiments to determine whether 

the properties of these four components are odorant dependent.  

 We used a 464 element photodiode array to monitor the activity in the in vivo turtle preparation. Each 

element of the array received light from a 170 x 170 µm2 area of the olfactory bulb and thereby monitors the 

membrane potential of a large number of neurons and neuronal processes. Any optical signal must represent 

changes in membrane potential that are at least partially synchronous (coherent) in some fraction of those 

neurons and processes. These membrane potential changes could arise from action potentials, synaptic 

potentials, or subthreshold oscillations in synaptically coupled neurons. 

 Hypotheses about the function of the olfactory bulb in odorant recognition can be broadly divided into 

two non-exclusive categories. The first proposes that the identity of odorants are represented in the bulb by the 

spatial map of activity across the bulb (Stewart et al., 1979; Cinelli et al., 1995; Mori & Yoshihara, 1995; 

Mombaerts et al., 1996; Friedrich & Korsching, 1998; Wachowiak and Cohen, 2001; Wachowiak et al., 2002). 

The second suggests that the temporal structure of the neuronal response provides information about odorant 

identity (Mozell, 1964; Delaney et al., 1994; Hopfield, 1995; Laurent et al., 1996; Stopfer et al., 1997, Perez-

Orive et al., 2002). Laurent et al., (1996) showed that the envelope of the local field potential oscillations in the 

locust could be both complex and different for different odorants. Stopfer et al., (1997) found that disrupting the 

oscillations in the bee reduced their ability to make fine odor discriminations.  

 Physical processes occurring at the level of the olfactory epithelium were hypothesized to have 

differential effects on the time course of the response to different odorants (Mozell, 1966, Mozell and 

Jagodowocz, 1973; Kent et al., 1996). We provide a test of this hypothesis by examining the temporal 

characteristics of responses in the olfactory bulb. 

 In addition to the three oscillations found in the olfactory bulb, a fourth oscillation can be measured by 

extracellular recording from the olfactory epithelium; this oscillation is a component of  the electroolfactogram 

(EOG). Evidence presented elsewhere (Ottoson, 1959; Dories and Kauer, 2000, Figure 3C; Lam et al., 2000; 

M. Zochowski and L. B. Cohen, unpublished observations) suggests that the oscillations in the EOG are only 

indirectly related to the oscillations seen in the olfactory bulb. 

  Abstracts of the results have been presented (Lam et al., 1998, 1999). 

 

MATERIALS and METHODS 
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Preparation. 

 Three species of box turtle, Terepene carolina, T. ornata and T. triunguis were used. No species 

difference was seen. Most of the animals were obtained from Charles D. Sullivan Co., Inc. (Nashville, TN) and 

weighed between 280 g and 800 g.  

 The composition of the turtle saline was: NaCl, 96.5 mM, KCl, 2.6 mM, MgCl2, 2.0 mM, NaHCO3, 31.5 

mM, CaCl2, 4.0 mM, Dextrose, 10 mM. The saline was bubbled with 95%/5% O2/CO2 to pH 7.2 before using. 

These chemicals were obtained from Sigma. 

 Details of the surgical procedures have been described previously (Lam et al., 2000). Briefly, the turtles 

were first anesthetized by placing them in ice for 2 hours. Shortly before surgery, lidocaine (0.4 to 0.6 ml, 1% 

w/v solution in saline) was applied near the site of craniotomy as a local anesthetic and tubocurarine (3 mg/kg) 

was injected intra-peritoneally or intra-muscularly to partially paralyze the animals. A craniotomy was 

performed over the olfactory bulb. To facilitate staining, the dura and arachnoid mater were then carefully 

removed. After the dissection, a segment of polyethylene tubing of appropriate length and diameter (OD 2.0 

mm, ID 1.0 mm) was inserted into the outlet of the nasal cavity in the roof of the mouth to facilitate odorant 

delivery. The experimental protocol was approved by the Yale Animal Care and Use Committee and the 

Marine Biological Laboratory Institutional Animal Care and Use Committee. 
Odorant delivery. 

 The design of the olfactometer was copied from Kauer & Moulton (1974). Cleaned and desiccated 

carrier gas, air with 1 % CO2, and laboratory air saturated with odorant vapor were mixed in the inner tube of a 

double-barrel odorant-applicator. The concentration of the odorant was adjusted by changing the flow-rate of 

the odorant vapor. The outer tube of the applicator was normally under suction to remove the odorant but at a 

command pulse, this suction was turned off to release a square-pulse of odorant. The horizontal bars in 

Figures 1-6 indicate the timing of this command pulse. Suction (100-300 ml/min), controlled by a separate, 

independent solenoid valve, was applied on the segment of tubing inserted into the nasal outlet. This suction 

was switched on 1-2 seconds before the odorant-pulse and continued for 15-20 seconds to draw the air - then 

odorant -then air into the nasal cavity. For additional details see Lam et al., (2000). 

Odorants. 

 The odorants were obtained from Sigma. The concentrations of odorant were 0.3%, 1.7%, 2.5%, 10%, 

and 15% of saturated vapor. For statistical comparisons the trials with 10% and 15% were grouped together as 

the high concentration condition and the trials with 1.7% and 2.5% were grouped together as the low 

concentration condition. 

Optical Imaging. 

 The dorsal olfactory bulb (about 30% of the total bulb surface area) was imaged using a macroscope 

designed to provide a large numerical aperture at low magnification. The macroscope was based on a 25 mm 

focal length, 0.95 f, camera lens (RedShirtImaging, LLC, Fairfield, CT). The preparation was illuminated using 

a 100 W tungsten halogen lamp. The excitation filter was 520 + 45 nm. A 590 nm long-pass dichroic mirror 
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(Omega Optical, Brattleboro, VT) reflected the excitation light onto the preparation. The secondary filter was a 

RG610 long-pass filter (Schott Optical Glass, Duryea, PA). For earlier experiments a 464 element photodiode 

array (Centronics, Co, New Addington, England) was used. In later experiments we used NeuroPlex, a 464-

element light-guide and photodiode imaging system (RedShirtImaging, LLC).  At the 4.5 x magnification used 

each element of the array received light from a 170 x 170 µm area of the object plane. The cut-off of the single-

pole RC high-pass filter of each amplifier was set to 0.07 Hz and the low-pass cut-off of the 4-pole switched 

capacitance Bessel filter was 125 Hz. The data acquisition rate was 250 frames per second. The light intensity 

reaching each photodetector was approximately 2x108 photons/msec which generated a photocurrent of about 

5x10-8 amperes. All of the results come from single trials; signal averaging could not be used because the 

timing of the osciallations were not precisely locked to the odorant onset. Higher-resolution pictures of the 

preparations were taken with a CCD camera (MTI RC300, Michigan City, IN). The images taken with the 

photodiode array and the CCD camera were aligned using a 3-dot calibration pattern.  

Staining. 

 The exposed olfactory bulb was stained by covering it with a solution of the styryl dye RH414 (Grinvald 

et al., 1994; Molecular Probes, T-1111) 0.01 to 0.2 mg/ml in saline for 60 minutes. After staining, excess dye 

was washed away with turtle saline. Examination of the sectioned bulb at the end of  experiments showed that 

the staining appeared uniform throughout the thickness of the exposed portion of the bulb.  

Data Analysis. 

 The NeuroPlex software was used to digitally filter and display the data. The high-pass filter was a 

numerical-simulation of an RC circuit and the low-pass filter was a Gaussian. The fractional change in 

fluorescence, ΔF/F, was calculated and plotted as the traces in Figures 1-6.  The signal sizes ranged from 10-4 

(middle oscillation) to 5x10-3 (DC) of the total intensity. Voltage-sensitive dye measurements on turtle olfactory 

nerves were used to determine the sign of an optical signal that represents a membrane depolarization; signals 

in the bulb that are inferred to represent depolarization are plotted upward. Two different schemes were used 

for assigning colors in pseudocolor presentations, fixed and variable. For the fixed pseudocolor display, the 

diode with the largest signal was found by visual inspection. Red color represents a signal size which exceeds 

75% of the size of the largest signal. This scale was then used to assign colors to the signals on all other 

detectors. This kind of pseudocolor presentation represents the relative size of the signals and was used in all 

the figures except for the bottom two panels in Figure 7. For the variable pseudocolor display the peak signal 

for each detector was assigned red and the nadir assigned purple; in this way every detector reaches red at 

some time during the recording independent of its signal size. This variable pseudocolor scale correctly 

represents the relative timing of the signals but it is susceptible to noise from detectors with small signal-to-

noise ratios. 

 The latency of the DC signal was calculated from the time difference between the onset of the odorant 

command pulse (Figure 2, red arrowheads) and start of the DC component (Figure 2, black arrowheads). The 

rise-time (10%-90%) of the DC component was measured from the traces. To analyze the oscillations, the 
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traces were band-passed filtered at 10-30 Hz; this converts the DC component into an initial peak (e.g. Figure 

1, DC) or, in instances where the rise-time is slow, can remove any sign of the DC component (e.g. Figure 5, 

bottom traces). The latency of an oscillation was defined as the time difference between the start of the 

odorant command pulse and the first peak of the oscillation (Figure 3, black arrowheads). The initial frequency 

of an oscillation was estimated from the time difference between the first peak (Figure 3, black arrowheads) 

and the third peak (Figure 3, red arrowheads).  

 In Table 1 we used paired t-tests to compare the rise-time and latency of the DC signals induced by 

cineole and isoamyl acetate. We first selected preparations that had DC responses with relatively large signal-

to-noise ratios to both odorants at matching concentrations (9 out of 37 preparations). For each animal, the 

trials with the same odorant type and concentration were grouped together and the average rise-time and 

latency of each group was computed. Paired t-tests were then used to analyze these averages. Effects of the 

odorant at high (15% or 10% of saturation) and low (2.5% or 1.7%) concentration are separately analyzed and 

presented. The statistical procedures for analyzing the latency and initial frequency of the rostral and middle 

oscillation for Table 1 were the same. Because only four animals were useful in the analysis of the caudal 

oscillation, the responses to the same odorant at both high and low concentration needed to be combined to 

generate a group large enough for use in comparisons. 

 Three odorants, cineole, isoamyl acetate, and hexanal, were tested in four additional preparations. We 

used repeated-measure ANOVA, one-way ANOVA and post-hoc analysis with Fisher’s PSLD to analyze these 

experiments. 

 

RESULTS  

 The three traces on the bottom of Figure 1A, taken from data published previously (Lam et al., 2000), 

show examples of the three oscillations, rostral, middle and caudal, and their location on the turtle olfactory 

bulb (Figure 1A, top). In addition to location, the oscillations differ in frequency, latency, shape, and time 

course of the envelope of the oscillation. Furthermore, all three traces in Figure 1 have a filtered version of the 

DC signal at the time indicated by the bar labeled DC (filtered); the DC signal is detected over the entire dorsal 

bulb. We made relatively extensive comparisons of the signals elicited by two odors, isoamyl acetate and 

cineole, which have a very different perceptual quality for humans (Arctander, 1994). Furthermore, these two 

odorants have qualitatively different maps of input to the turtle olfactory bulb as indicated by measurements of 

Calcium Green fluorescence from olfactory receptor neuron terminals (Figure 1B; Wachowiak et al., 2002). The 

figure illustrates maps of the input for two concentrations of isoamyl acetate (top) and cineole (bottom). The 

maps for the two odorants are qualitatively different at both concentrations. In addition to isoamyl acetate and 

cineole, a smaller number of experiments were carried out with hexanal and hexanone.  

 Figure 2 illustrates typical examples of the DC component and the middle oscillation elicited by cineole 

and isoamyl acetate. Traces from the middle part of the olfactory bulb are shown. The red and black 

arrowheads on the traces indicate where we designated the onset of the odorant and the onset of the DC 
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response. The response elicited by 1.7% isoamyl acetate rises much more slowly (Figure 2A) than the 

response to 1.7% cineole (Figure 2B).  In measurements made at odorant concentrations that were six times 

higher, cineole had a similarly faster rise-time. To quantitate the differences we measured the rise-time (10%-

90%) of the DC signals. The isoamyl acetate DC signal had a rise-time that was about twice as long as that for 

cineole; statistical analysis showed that the difference was significant, p < 0.001 (Table 1). The pseudocolor 

images in Figure 2B and D illustrate the spatial spread of the DC signal (at substantially different frame 

intervals). 

 The middle oscillation can be seen riding on top of the DC response (three blue arrowheads in Figure 

2). To show the middle oscillation more clearly, the data of Figure 2 are illustrated after high-pass filtering to 

remove low-frequency components and increasing the y-axis gain (Figure 3A, C). The latency of the middle 

oscillation (indicated by the black arrowheads) elicited by isoamyl acetate was substantially longer than that 

elicited by cineole. (If an oscillation begins as a small signal, the latency determination will be imprecise. As a 

result we attempted to be conservative with regard to concluding that there a difference between cineole and 

isoamyl acetate. For example, the start of the middle oscillation in response to cineole was chosen 

conservatively (black arrow, Figure 3C); the arrow could have been positioned at the earlier peak on the falling 

phase of the DC signal. Because of this imprecision in determining the latency, only large latency differences 

are considered.) Two additional comparisons illustrating a shorter latency for cineole are shown in the top 

portion of Figure 6. The mean latency of the middle oscillation in response to cineole was 200 msec shorter 

than that of isoamyl acetate; p < 0.05 (Table 1). The percentage differences in the latencies given in Table 1 

(30-35%) are an underestimate because we took as the starting time the beginning of the command pulse to 

the solenoid controlling the odorant delivery and there is a substantial (~ 100 msec) delay between the start of 

the command pulse and the arrival of odorant at the olfactory epithelium. If the beginning of the DC signal were 

used as the starting point for the latency measurements, then the percentage difference would be larger.  

 The difference in latencies between cineole and isoamyl acetate was specific to the middle oscillation. 

In another trial from the same animal in which both the middle and the rostral oscillation were detected, the 

middle oscillation induced by isoamyl acetate again had a longer latency (arrows, Figure 4A); however, in 

contrast, the rostral oscillation in response to isoamyl acetate and cineole had similar latencies (arrows, Figure 

4B). The grouped data also showed no significant differences in the latency of the rostral oscillations evoked 

by cineole and isoamyl acetate; p = 0.48 (Table 1). 

 Table 1 also summarizes the comparisons of the initial frequency of the three oscillations using paired 

t-tests. Odorant type also had no effect on the initial frequency of the middle oscillation or the caudal oscillation 

(p >0.3). In this comparison odorant type had a small, 5%, but significant effect on the initial frequency of the 

rostral oscillation, p < 0.05. The measurements for the rostral oscillation were only made at high odorant 

concentration; there was not enough data at low concentration.  

 Repeated trials in one preparation. The above statistical analyses considered the means for the two 

odorants for each preparation and then compared these means across preparations. To examine trial-to-trial 
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variability in individual preparations we compared the individual trials in preparations where there were three 

or more trials for both cineole and isoamyl acetate. For the rise-times of the DC signal we performed unpaired 

t-tests in five preparations. The differences were significant in four preparations (p < 0.005); the difference was 

not significant in one (p=0.065). The number of trials ranged from 9 to 21. For the latency of the middle 

oscillation we performed unpaired t-tests in two preparations; the differences were significant in both (p < 

0.001). The number of trials that were compared was 12 and 16. Thus, the differences in DC rise-time and 

latency of the middle oscillation were also significant in trial-to-trial comparisons in individual preparations.  

 Comparison with hexanal. In four animals we compared several parameters of the response to hexanal, 

cineole, and isoamyl acetate. The rise-time (10%-90%) of the DC signals were compared using repeated-

measure ANOVA.  The differences between odorants was statistically significant (F=5.71, p<0.05).  Post-hoc 

analysis using Fisher's PSLD indicated that the differences between cineole and isoamyl-acetate, and cineole 

and hexanal were significant (p<0.05). The difference between isoamyl-acetate and hexanal was not 

significant (p>0.5). There is a similar relationship between the three odorants in the location of their input to the 

olfactory bulb; the maps of input were similar for hexanal and isoamyl acetate but different for cineole 

(Wachowiak et al., 2002).  

Comparison of the rostral oscillation for the three odorants using repeated-measure ANOVA showed, in 

contrast to the small effect seen comparing only cineole and isoamyl acetate (see above), that the latencies 

and initial frequency were not significantly different across odors (p>0.05); e.g. Figure 5, bottom. The caudal 

oscillation could be compared in only two of the preparations. The trial-to-trial differences of the frequency and 

latency was measured using one-way ANOVA. Neither the latency nor the frequency of the caudal oscillations 

were different for the three odorants.  

Envelope of the oscillations. 

 In the locust, different odorants evoke local field potential oscillations that can have reproducibly 

different envelopes (Figure 5, Laurent et al., 1996; G. Laurent, personal communication). In contrast, Figure 5 

shows three comparisons of the rostral oscillation (including four odorants) and Figure 6 shows two 

comparisons of middle oscillations (two odorants), and  two comparisons of caudal oscillations (three 

odorants). In all instances the envelopes of the oscillations appeared to increase and decrease monotonically. 

Furthermore, in contrast to the results in the locust, in all seven comparisons in Figures 5 and 6 the envelopes 

of the oscillations are very similar. This is the typical result in those instances where the two odorants evoke 

oscillations of approximately equal amplitude. 

Location and areal extent. 
 The areal extent of the four components was always much larger than the area of a single glomerulus 

even at odorant concentrations as low as 0.3 % (Figures 2, 3, and 7). Comparisons of the locations of the DC 

component and the middle oscillation elicited by cineole and isoamyl acetate at 1.7 % of saturation are shown 

in the pseudocolor images in Figures 2 and 3. The position of the DC signal during the rising phase (times 

indicated by red lines) is shown in Figure 2B and 2D. The DC components elicited by both odorants started in 
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the middle-caudal bulb and then spread over a large area of the bulb. Figure 2B and D shows only the signals 

that are >60% of the largest signal. Smaller DC signals are seen over the remaining area of the bulb. Clearly, 

the areas of activation of the DC component for the two odorants overlap extensively. Although the locations of 

the initiation sites and the shapes of the activated areas differed slightly in this example, these differences 

were not consistent across trials. The locations of the middle oscillation during one cycle (indicated by red 

lines) are shown in Figure 3B and D. The locations of the middle oscillations elicited by cineole and isoamyl 

acetate were not detectably different. They both started in the middle-caudal region of the bulb and then 

spread to a substantial portion of the caudal-middle area.  

 Figure 7 compares the extent and locations of the three oscillations using an expanded presentation of 

a single frame taken at the peak of one cycle of an oscillation. The top three frames of Figure 7A show the 

location of the rostral oscillation in response to 0.3% cineole, isoamyl acetate, and hexanone; the rostral 

oscillation has the same location for all three odorants. Similar comparisons between cineole and isoamyl 

acetate were made in 15 pairs of trials from 10 preparations (odorant concentration range 0.3 to 15%); in all 

cases the rostral oscillations for the two odorants were found in apparently identical locations. In other 

experiments the rostral oscillations in response to all four odorants (cineole, isoamyl acetate, hexanal, and 

hexanone) had the same location and extent (data not shown). Figure 7B compares the propagation of one 

cycle of the rostral oscillation for 0.3% cineole and isoamyl acetate. The rate and direction of propagation for 

the two different odorants is similar.  

 Figure 7C illustrates an additional comparison of the location of the middle oscillations for cineole and 

isoamyl acetate. Again the location of this oscillation is apparently identical for the two odorants. Similar results 

were obtained in three other preparations. Figure 7D compare the locations of the caudal oscillation in 

response to cineole and isoamyl acetate. While the example indicates that the location of the two caudal 

oscillations is identical, this result must be qualified because the location of the caudal oscillation changes from 

cycle-to-cycle (Figure 6 of Lam et al., 2000). Thus, in other cycles from the same trial the location may change 

by up to 3 pixels on the photodiode array (~ 450 µm). Similar comparisons for the caudal oscillation were made 

in 10 pairs of trials from 7 preparations (odorant concentration range 1.7 to 15%); in no case were the 

differences in the locations of the caudal oscillation for cineole and isoamyl acetate larger than the cycle-to-

cycle differences. 

 

DISCUSSION 
 We compared the population responses in the turtle olfactory bulb elicited by four  odorants with 

differing functional groups (an acetate, an aldehyde, a ketone, and a heterocyclic molecule); the most complete 

data compares cineole and isoamyl acetate. These two odorants are perceptually quite different to humans 

and have qualitatively different maps of input to olfactory bulb glomeruli in the turtle. We found that two 

temporal parameters of the signals were substantially different for cineole and isoamyl acetate: the rise-time of 

the DC component was faster and the latency of the middle oscillation was shorter for cineole (Table 1). This 
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latency difference cannot be explained by a general speed-up of the responses to cineole because the 

latencies to the rostral and caudal oscillations were not different for cineole and isoamyl acetate.  

 In one comparison of the initial frequency of the rostral oscillation, we found a small (5%) difference that 

was significant (Table 1); in a second comparison (including hexanal) a significant difference was not detected. 

Both Hughes and Mazurowski (1962) in the monkey and Dorries and Kauer (2000) in the salamander reported 

small odorant dependent differences in olfactory bulb oscillation frequency.  

 The remaining parameters that we measured appeared to be the same for the odorants we tested. 

These include the location, envelope, and areal extent of all three oscillations, the frequency of the middle and 

caudal oscillation, and the propagation direction and velocity of the rostral oscillation.   

Rate of rise of the DC component. 
 We found a dramatic difference in the rate of rise of the DC component for cineole and isoamyl acetate; 

the rise-time of the response to isoamyl acetate was almost two times slower than that of cineole. Mozell and 

Jagodowicz (1973) measured the difference in latency of the response of two branches of the olfactory nerve 

in the frog and compared that to the difference in retention time by the olfactory mucosa. They found that 

odorants with low retention times on vapor phase chromatography (Fuller et al., 1964) had small differences in 

latency between the two branches of the olfactory nerve. From this result one might expect that odorants with 

lower retention times would result in more synchronous activation of receptors and thus more rapid DC signals. 

We found the opposite result. Amyl acetate has a retention time that is about one half that of cineole and thus 

would be expected to have a faster response time. Apparently other factors must be important in determining 

the rate of rise. These factors might include differences in rates of diffusion in the olfactory mucosa or 

differences in the range of odorant thresholds in the receptor neurons activated by the two odorants. 

Large and smooth spatial extent. 
 The spatial extent of the three oscillations was large at all of the odorant concentrations we tested (0.3 

% to 15%; Figures 2, 3, 7). Furthermore, the spatial maps of the oscillations do not have the individual 

glomerular detail that has obtained using Calcium Green to record the activity of olfactory receptor axon 

terminals (Friedrich and Korsching, 1997; Wachowiak and Cohen, 2001; Wachowiak et al., 2002) or from 

intrinsic imaging signals (Rubin and Katz, 1999; Meister and Bonhoeffer, 2000; Uchida et al., 2000). We 

presume that the present results, obtained after staining all of the neurons in the bulb with the voltage sensitive 

dye, reflect the activity of many neuron types throughout the thickness of the bulb. Although it is well known 

that axonal projections follow a precise spatial map to individual glomeruli (Mombaerts et al., 1996), it is not 

clear that olfactory processing that occurs in the bulb maintains the same spatial precision. Our data suggests 

a spatially distributed processing in the olfactory bulb. Additional measurements using staining methods that 

specifically label the mitral/tufted neurons would be required to determine whether the output of the bulb is 

similarly distributed. 

Temporal codes in the turtle. 

 Our results are not inconsistent with the use of temporal encoding for odorant recognition in the turtle 
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but a strong conclusion cannot be made. On one hand, we did find substantial odorant dependent 

differences in the rise-time of the DC signal and in the latency for the middle oscillation. In addition, we 

previously reported that the caudal oscillation shows cycle to cycle differences in location (Lam et al., 2000), 

reminiscent of the differing neuronal associations that occur from cycle to cycle in the locust (Laurent et al., 

1996). On the other hand, we did not detect substantial odorant dependent differences in the frequency, 

envelope, or spatial extent of any of the oscillations. One possibility is that these oscillation signals are used to 

code for something other than odor quality.  

Comparison with oscillations in invertebrates and other vertebrates. 

 Olfactory processing in arthropods and molluscs may differ qualitatively from that found in the turtle. We 

found no odorant dependent differences in envelopes of the three oscillations (Figures 5-6).  (We are not 

aware of evidence concerning the odorant dependence of the envelope of the oscillations in other vertebrates.) 

In contrast, substantial odorant dependent differences in the oscillation envelopes can be seen in the locust 

(Figure 5, Laurent et al., 1996; G. Laurent, personal communication). Perez-Orive et al (2002) suggest that the 

oscillations in the locust contribute to sparsening of odorant representation in the antennal lobe. The fact that 

the oscillation envelopes in the turtle are apparently independent of odorant allows the speculation that their 

role in olfactory processing may not be related to odor recognition.  

 In the mollusc it appears that yet another scheme is used. There is a steady-state ~1 Hz oscillation that 

is a propagating wave across the procerebral lobe. This oscillation is present in the absence of odor and its 

frequency and/or propagation velocity is altered by air and odorants (Delaney et al., 1994, Nikitin and Balaban, 

2000). 

 These differences between molluscs, insects, and the turtle suggests that, even though oscillations are 

widely observed in olfactory processing, the functional roles of these oscillations may vary; diverse strategies 

for olfactory processing may be used in different phyla. 
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Table 1. Statistical analysis of parameters for the four components for isoamyl acetate and cineole. 

 

Component Parameter Concentration Value for iaa1 Diff2 % Diff3 t (DF) p 
DC latency high 285 ms +14 ms 5 0.74 (9) 0.48 
  low 266 ms + 8 ms 3 0.55 (9) 0.59 
 rise-time  high 354 ms -141 ms 40 6.6 (6) 0.0006*
  low 460 ms -188 ms 41 5.9 (7) 0.0006*
Rostral latency high 761 ms +46 ms 6 0.74 (7) 0.48 
 frequency high 14.9 Hz -0.7 Hz 5 -2.8 (7) 0.027* 
Middle latency high 668 ms -233 ms 35 -3.9 (4) 0.018* 
  low 628 ms -200 ms 32 -5.2 (3) 0.015* 
 frequency high 14.4 Hz +1.2 Hz 8 0.94 (4) 0.40 
  low 13.3 Hz -.03 Hz 2 -0.46 (3) 0.68 
Caudal latency high/low 1029 ms +186 ms 18 -2.56 (4) 0.06 
 frequency High/low 6.0 Hz -0.3 Hz 5 0.99 (4) 0.38 
 
* Significant 
1 Mean values for isoamyl acetate.  
2 A positive number indicates that the response elicited by cineole has a larger parameter value, MC - MIAA 
where MC and  MIAA  are the means for the response of cineole and isoamyl acetate. 
3 (MC - MIAA) / MIAA.
4 The responses to the high and low concentration odorants were combined in this analysis. 
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Figure 1. A. The time course and locations of the three oscillations that occur in response to odorants in the 

turtle olfactory bulb. Simultaneous optical recordings from three different areas. Signals from three selected 

pixels are shown below the outline of the bulb. The approximate positions of these pixels are labeled with 

squares and numbers on the image of the bulb. The oscillation in the rostral region has a high frequency and 

relatively long latency and duration (detector 1). The oscillation from the middle region has a high frequency 

and short latency and duration (detector 2). The oscillation from the caudal region has a lower frequency and 

the longest latency (detector 3). The horizontal line labelled "10% cineole" indicates the time of the command 

pulse to the odor solenoid. The data are filtered by digital high-pass (5 Hz) and low-pass (30 Hz) filters. For all 

of the figures the high-pass filter is an RC filter and the low-pass is Gaussian and all of the results are from 

single trials. The data in A were taken from Lam et al., (2000).  B. Images of the input to the bulb as indicated 

by the signalsd from Calcium Green-1 dextran in the nerve terminals of the olfactory receptor axons. The input 

maps for isoamyl acetate and cineole are qualitatively different. The data in B were taken from Wachowiak et 

al., (2002). 

Figure 2. Comparison of the rate of rise of the DC component elicited by isoamyl acetate and cineole. A. 
Typical example of the DC component elicited by 1.7 % isoamyl acetate. The trace is the spatial average of 

five diodes in the middle region of the olfactory bulb.  The DC component induced by isoamyl acetate has a 

relatively slow rise-time.  

B. Multi-frame display of the spatial dynamics of the DC signal during the rising phase bracketed by red lines in 

A. The signal starts in a middle-caudal region and then spreads to almost the entire bulb. In B and D the fixed 

pseudocolor scale was used which represents the size of the signal. In this figure and in Figure 3 we show only 

the signal between the maximum and 60% of maximum so that the image of the bulb can also be seen. In all of 

the pseudocolor figures signals between 80 and 100% of the maximum are colored red. 

C. Typical example from the same preparation of the DC component elicited by 1.7 % cineole. The trace is the 

average of the same five selected diodes (used in A) in the middle region. The rise-time is much shorter. 

D. The multi-frame display of the spatial dynamics of the DC component during the rising phase bracketed by 

red lines in C. Again, the signal starts in the middle region and then spreads to almost the entire bulb. 

Arrowheads on the two traces (A, C) designate where we assign the time of the start of the odor command 

pulse (red) and the start of the DC component (black) for latency analysis. The blue arrows indicate three 

cycles of the middle oscillation which rides on top of the DC signal. In this and subsequent figures the 

horizontal bar indicates the timing of the odor-command pulse. The traces are band-passed between 0.1 and 

30 Hz. 

Figure 3. Comparison of the latencies of the middle oscillations elicited by isoamyl acetate and cineole. Same 

data as Figure 2 but digitally filtered with a 10 Hz high-pass RC filter. 

A. Typical example of a middle oscillation elicited by 1.7 % isoamyl acetate. The middle oscillation induced by 

isoamyl acetate had a relatively long latency.  

B. Multi-frame display of the spatial dynamics of the oscillation during the cycle indicated by the red lines in A. 
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The cycle initiates in a medial middle region and then spreads to the middle and caudal bulb. In B and D the 

fixed pseudocolor scale was used which represents the size of the signal. Because the size of the middle 

oscillation is relatively small, the pseudocolor images are noisier than those for the DC signal. 

C. Typical example of the middle oscillation elicited by 1.7 % cineole. The middle oscillation in response to 

cineole has a shorter latency. 

D. Multi-frame display of the cycle indicated by the red lines in B. The oscillation again begins in a medial 

middle region and then spreads to the middle and caudal bulb. 

Arrowheads on the two traces (A, C) designate where we assigned the time of the first peak (black) and third 

peak (red) of the oscillation for the measurement of the latency and frequency. The traces are filtered at 10 to 

30 Hz. In this and subsequent figures the high-pass filter is an RC filter and the low-pass filter is a Gaussian.  

Figure 4. The latency difference of the middle oscillation is not present in the rostral oscillation. The traces in A 

are the spatial average of five diodes from the medial region of the bulb. The medial oscillation induced by 

cineole has a shorter latency than that induced by isoamyl acetate. On the other hand, the rostral oscillation 

elicited by cineole has similar latency (B) for the two odorants. The traces are filtered at 10 to 30 Hz. 10% 

isoamyl acetate and 10% cineole were used. The arrows indicate the time we designated as the onset of the 

oscillation.  

Figure 5. Comparisons of the envelopes of the rostral oscillations; three pairs including four different odorants 

from two preparations are illustrated. The envelopes are not obviously different even though the chemical 

structures and the human perception of the odorants are quite distinct. Each trace represents the average from 

5-10 pixels. The data were filtered with a high-pass RC filter of 5Hz to reduce the size of the DC components. 

A low pass Gaussian filter of 30 Hz was used to reduce high-frequency noise. 

Figure 6. Comparisons of the envelopes of the middle and caudal oscillations; two pairs including two different 

odorants from two preparations are illustrated for the middle oscillation, two pairs including three different 

odorants from two preparations are illustrated for the caudal oscillation. The envelopes of the middle and 

caudal oscillation are not obviously different even thought the chemical structures and the human perception of 

the odorants are quite distinct. Each trace represents the average from 5-10 pixels. For the middle oscillation 

the data were filtered with a high-pass RC filter of 10 Hz to reduce the size of the DC components; a low pass 

Gaussian filter of 30 Hz was used to reduce high-frequency noise. For the caudal oscillation the data were 

filtered with a high-pass RC filter of 5 Hz to reduce the size of the DC components; a low pass Gaussian filter 

of 10 Hz was used to reduce high-frequency noise. 

Figure 7. A. Comparison of the locations of the rostral oscillations in response to cineole, isoamyl acetate, and 

hexanone odor presentations at 0.3% of saturated vapor. The rostral oscillations are found in the same 

location for the three odorants. The time points shown are the time points of the largest signal over the largest 

area. The fixed pseudocolor scale was used which represents the size of the signal. B. Five time points during 

the cycles shown above for cineole and isoamyl acetate. The propagation in the rostral-caudal direction is 

similar for both odorants. The variable pseudocolor scale (see methods) was used which better represents the 
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timing of the signals. C. Comparison of the locations of the middle oscillations in response to cineole and 

isoamyl acetate odor presentations at 15% of saturated vapor. The middle oscillations are found in the same 

location for the two different odorants. In these measurements the position of the image of the olfactory bulb 

differed from that shown in Figure 1 in that the rostral portion of the bulb was in the middle of the image. D: 

Comparison of the locations of the caudal oscillations in response to cineole and isoamyl acetate odor 

presentations at 10% of saturated vapor. In these examples the caudal oscillations are located in the same 

location for the two different odorants. In C. and D. the fixed pseudocolor scale was used which better 

represents the size of the signal. The time points shown are the time points of the largest signal over the 

largest area. 
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