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[1] Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on
the ability of empirical methods to remove the large natural variability of the ocean
carbon system. A coupled carbon-climate model is used to evaluate these
empirical methods. Both the DC* and multiple linear regression (MLR) techniques
reproduce the predicted increase in dissolved inorganic carbon for the majority of the
ocean and have similar average percent errors for decadal differences (24.1% and 25.5%,
respectively). However, this study identifies several regions where these methods may
introduce errors. Of particular note are mode and deep water formation regions, where
changes in air-sea disequilibrium and structure in the MLR residuals introduce errors.
These results have significant implications for decadal repeat hydrography programs,
indicating the need for subannual sampling in certain regions of the oceans in order to
better constrain the natural variability in the system and to robustly estimate the
intrusion of anthropogenic CO2.

Citation: Levine, N. M., S. C. Doney, R. Wanninkhof, K. Lindsay, and I. Y. Fung (2008), Impact of ocean carbon system variability

on the detection of temporal increases in anthropogenic CO2, J. Geophys. Res., 113, C03019, doi:10.1029/2007JC004153.

1. Introduction

[2] Since the start of the industrial revolution, anthropo-
genic activity, such as fossil fuel combustion, has resulted in
the emission of large quantities of carbon dioxide (CO2)
into the atmosphere. The resulting increase of atmospheric
CO2 over the past several centuries has been well docu-
mented from high-resolution ice cores [e.g., Etheridge et al.,
1996] and, starting in 1957, direct measurements [e.g.,
Keeling et al., 1976; Keeling and Whorf, 1994]. As CO2

is a potent greenhouse gas, increased atmospheric concen-
trations are projected to increase surface temperatures,
resulting in shifts in regional and global climates [e.g.,
Hansen et al., 2006; Intergovernmental Panel on Climate
Change (IPCC), 2001]. Consequently, there is great interest
in quantifying the current and future rates of increase of
atmospheric CO2 and predicting the effect of these in-
creased concentrations on the global climate [e.g., Dilling
et al., 2003].

[3] Not all anthropogenic CO2 remains in the atmosphere.
Current estimates are that the oceans and terrestrial bio-
sphere have each removed �30% of anthropogenic CO2

emissions over the past 20 years [IPCC, 2001; Sabine et al.,
2004a]. Because of large uncertainties on these estimates,
there are ongoing efforts to better quantify the magnitude of
these two sinks using a combination of field programs,
empirical methods, and numerical models. For the oceans a
major focus is on directly measuring the temporal change in
the oceanic dissolved inorganic carbon (DIC) inventory
through time series and repeat hydrographic sections [Peng
et al., 1998;Wallace, 1995, 2001]. The U.S. and international
Climate Variability and Predictability (CLIVAR)/CO2 pro-
grams (U.S. and international CLIVAR/CO2 data are avail-
able at http://ushydro.ucsd.edu and http://ioc.unesco.org/
ioccp, respectively), for example, are monitoring the oceans’
response to anthropogenic CO2 and climate change through
reoccupation on approximately a decadal timescale of key
sections from the 1990s World Ocean Circulation Experi-
ment (WOCE)/Joint Global Ocean Flux Study global CO2

survey.
[4] The ocean carbon system exhibits significant natural

climate variability on subannual to decadal and longer
timescales. This natural variability complicates efforts to
constrain oceanic anthropogenic CO2 uptake via direct
measurements of DIC temporal changes. For example, an
estimate of the increase in DIC due to anthropogenic CO2,
DCanthro, can be computed by differencing observed DIC
concentrations at two sampling times,

DCanthro ¼ Cobs t1ð Þ � Cobs t0ð Þ: ð1Þ
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However, this estimate will alias vertical and lateral heave
of isopycnal surfaces associated with mesoscale eddies and
frontal oscillations [Haine and Gray, 2001; Peacock et al.,
2005] as well as shifts in water masses and water mass
properties associated with interannual climate modes such
as the El Niño–Southern Oscillation [Feely et al., 1999; Le
Quere et al., 2003]. This is particularly a problem for field
programs such as CLIVAR/CO2, which sample on limited
spatial and temporal timescales and so greatly undersample
the natural variability of the ocean carbon system. However,
these programs are currently one of the only ways of
acquiring basin-scale, full depth ocean coverage.
[5] Two broad categories of methods have been proposed

to correct observed DIC fields for natural variability in
biology and circulation in order to detect secular trends in
anthropogenic CO2 storage. The first approach estimates
total anthropogenic CO2 (Canthro), defined as the DIC
concentration difference between current and preindustrial
conditions. Empirical methods for estimating Canthro, first
introduced by Brewer [1978] and Chen and Millero [1979],
take the general form

Canthro ¼ Cobs � Ceq � Cbio � Cdiss; ð2Þ

where Cobs is the observed DIC, Ceq is the equilibrium DIC
concentration for a preindustrial atmosphere (280 ppm),
Cbio is the change in DIC due to remineralization of organic
matter, and Cdiss is the change in DIC due to the dissolution
of calcium carbonate. Gruber et al. [1996] modified
equation (2) by adding a term, Cdiseq, to account for the
CO2 air-sea disequilibrium experienced by a water parcel
when it was last at the surface,

C
C*
anthro ¼ DC*� Cdiseq; ð3Þ

where DC* equals Canthro in equation (2). This technique
(termed the DC* method) corrects DIC for changes in rates
of remineralization and dissolution using other tracers for
these processes, such as apparent oxygen utilization (AOU)
and the change in alkalinity. This requires the assumption
that changes in AOU and alkalinity can be converted to
changes in DIC using fixed ratios. In addition, the DC*
method does not account for changes in DIC resulting from
isopycnal heave and so is typically applied along isopycnal
surfaces to avoid biases in the estimate of Canthro [Gruber et
al., 1996].
[6] The DC* method is commonly used for estimating

Canthro, albeit with subtle difference in application [Coatanoan
et al., 2001; Gruber, 1998; Lee et al., 2003; Lo Monaco et al.,
2005; Sabine and Feely, 2001; Sabine et al., 2002, 2004b,
1999; Wanninkhof et al., 1999]. Several other empirical
methods have been proposed for estimating total anthropo-
genic CO2, including the tracer combining oxygen, inorganic
carbon, and total alkalinity approach [Touratier and Goyet,
2004a, 2004b; Touratier et al., 2005] and the optimum
multiparameter mixing analysis approach [Goyet et al.,
1999]. Estimates of total anthropogenic CO2 can also be
used to estimate the temporal change of Canthro, DCanthro, by
differencing Canthro from two sampling times, for example
[Peng et al., 1998; Sabine et al., 2004b],

DC
C*
anthro ¼ C

C*
anthro t1ð Þ � C

C*
anthro t0ð Þ: ð4Þ

[7] The second approach for correcting observed DIC
fields in order to estimate the temporal change in anthro-
pogenic carbon, DCanthro, utilizes multiple linear regression
(MLR) analysis [Friis et al., 2005; Goyet and Davis, 1997;
Peng, 2005; Peng et al., 2003; Sabine et al., 2004b, 1999;
Wanninkhof et al., 2006a]. This technique, introduced by
Brewer et al. [1995] and Wallace [1995], is a purely
statistical method for removing variability in DIC due to
natural changes in circulation and biological respiration
and remineralization. The MLR method fits observed DIC
as a function of physical (temperature and salinity) and
biogeochemical (oxygen, phosphate, nitrate, and silicate)
properties. DCanthro is then estimated as the residual
between the observed DIC and an MLR-calculated DIC,
which is representative of some earlier time (see details in
section 3.2),

DCMLR
anthro ¼ Cobs t1ð Þ � CMLR t0ð Þ: ð5Þ

The basic assumption is that temporal variability in DIC due
to natural processes will follow the linear spatial relation-
ships derived using the MLR, while DIC changes due to
anthropogenic activity will not. In theory the MLR should
remove the majority of the DIC variability caused by
heaving of isopycnal surfaces or shifts in fronts between
water masses.
[8] As an alternative to the above mentioned empirical

techniques, tracer-based proxy methods are often used to
estimate the temporal evolution of anthropogenic CO2 in the
ocean. These approaches use tracers, such as d13C and
chlorofluorocarbons, as proxies for anthropogenic CO2

[e.g., McNeil et al., 2003; Quay et al., 2003; Wallace,
1995; Waugh et al., 2006]. Often different empirical tech-
niques and tracer approaches give significantly different
inventory estimates and spatial distributions of anthropo-
genic carbon. Several studies have compared Canthro esti-
mates made by these various techniques [Lo Monaco et al.,
2005; Peng, 2005; Peng et al., 2003; Sabine et al., 1999;
Wanninkhof et al., 1999]. However, determining the success
or failure of these methods is difficult as the ‘‘true’’
anthropogenic signal is unknown. Several studies [e.g.,
Matsumoto and Gruber, 2005; Waugh et al., 2006] have
addressed this problem by using the output of a global
climate model as a synthetic data set to compare empirically
based estimates of Canthro to the ‘‘true’’ anthropogenic signal
in the model. Matsumoto and Gruber [2005] use this
approach to conclude that the largest error in the DC*
estimate of Canthro is due to the uncertainty in the air-sea
disequilibrium term.
[9] The objective of this study is to evaluate our ability to

accurately estimate the increase of oceanic anthropogenic
CO2 over time, DCanthro. To do this, we use the output of a
coupled carbon-climate model as an artificial data set to
which we apply commonly used empirical methods for
estimating DCanthro; our approach is similar to that of
Matsumoto and Gruber [2005] but with an emphasis on
temporal changes. To replicate the sampling schemes of
repeat hydrography programs, which are reoccupying ocean
sections on a �10 year timescale, we sample model output
for 2 months 10 years apart. We use this synthetic data set to
determine where these methods may succeed and may fail
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in the context of ocean carbon variability and the current
CLIVAR/CO2 Repeat Hydrography Program.
[10] This study compares the two most widely used

techniques: DC* and MLR. We find that both methods
have similar average percent errors and RMS errors and do
a reasonable job reproducing the temporal trends of the
predicted anthropogenic signal. However, the DC* method
is unable to remove some of the natural variability in the
ocean carbon cycle, particularly in high-latitude, deep
convection regions, resulting in estimates of DCanthro which
deviate from the predicted values by up to ±10 mmol kg�1

per decade. This signal is comparable to or larger than the
predicted secular trends over the 10 year sampling period.
The MLR technique also has shortcomings primarily in its
interpretation. Both methods have known problems in the
upper 200 m and so cannot be applied robustly to this
region.

2. Coupled Carbon-Climate Model

[11] The Climate System Model 1.4 (CSM1.4) carbon
model [Doney et al., 2006] output is used as a synthetic data
set to address the question of anthropogenic CO2 detection
and attribution. The model has fully coupled physical
climate and carbon cycle modules for the ocean, atmo-
sphere, and land. The CSM1.4 model was developed in the
framework of the National Center for Atmospheric Re-
search (NCAR) Community Climate System model
(CCSM) [Blackmon et al., 2001]. The physical model is
composed of the NCAR Ocean Model, the NCAR Land
Surface Model, the Community Climate Model (CCM), and
the Community Sea Ice Model, which are coupled together
so that mass and energy exchanges among the different
reservoirs are conserved. The ocean model [Gent et al.,
1998] is non–eddy resolving with a grid spacing of 3.6�
longitude and 0.8� to 1.8� latitude with 25 vertical levels.
The land and atmospheric model resolution is �3.75� with
18 vertical levels (for the atmosphere). The carbon module
for each component is spun up individually in order to
minimize drifts in the global carbon inventories. The land
biogeochemical model is a modified version of the Carne-
gie-Ames-Stanford-Approach model. The ocean biogeo-
chemical model is derived from the second Ocean
Carbon-Cycle Model Intercomparison Project (OCMIP II)
biotic model described by Najjar et al. [2007] and Najjar
and Orr [1999]. Prognostic variables include DIC, dis-
solved organic matter (DOM), particulate organic matter
(POM), phosphate (PO4), dissolved organic phosphorus,
oxygen (O2), total dissolved inorganic iron, and alkalinity.
Three significant modifications were made to the OCMIP II
model: production (DOM, POM) is prognostically comput-
ed as a function of light, temperature, phosphate, and iron;
iron is added as a limiting nutrient of biological production;
and an iron cycle is incorporated into the model. Though
ecosystem dynamics are not explicitly calculated in the
model, model equations are fully prognostic. Therefore
there is no nudging or restoring of variables during the
model runs. A full description of the coupled climate model,
including model biogeochemical equations, can be found in
the work of Doney et al. [2006].
[12] A 1000 year control simulation of the CSM1.4 model

compares reasonably well against observations, displaying

stable surface temperatures (±0.10 K) and atmospheric CO2

concentrations (±1.2 ppm) and relatively little deep ocean
drift [Doney et al., 2006; Fung et al., 2005]. The largest
discrepancies between the model and observations are in the
equatorial Pacific Ocean in which CCM atmospheric dy-
namics create a dual intertropical convergence zone result-
ing in unrealistic precipitation patterns. Also, in the
equatorial Pacific, simulated ocean biogeochemistry results
in unrealistically low export production because of exces-
sive iron limitation and problems with upwelling parameter-
izations [Doney et al., 2006].
[13] We focus on two model simulations: a 1000 year

control run and the final 100 years from a transient run
(1820–2100) forced with historic fossil fuel CO2 emissions
up to 2000 and then the IPCC ‘‘business as usual’’ emis-
sions scenario (A2) [IPCC, 2001, 2000]. The transient run
(1820–2100) was started on year 101 of the control run.
Because the simulations use prescribed CO2 emissions
rather than prescribed atmospheric CO2 trajectory, the
model years do not exactly match actual calendar years.
The simulated atmospheric CO2 concentration in year 2000
therefore is somewhat low compared to observations
(�346.5 ppmv compared with �367 ppmv), lagging about
12 years behind reality. While the model CO2 concentrations
cannot be directly matched to calendar years, the overall CO2

temporal trends for the 21st century and the year 2100 CO2

concentration (�765 ppmv) are comparable to those from
other carbon-climate projections [Friedlingstein et al., 2006;
Fung et al., 2005].
[14] Anthropogenic CO2 is not explicitly tracked in the

CSM1.4 model; therefore the intrusion of anthropogenic
CO2 into the ocean must be calculated from the model
output. There are two approaches for this calculation. The
first method computes Canthro by differencing the transient
simulation and the corresponding time in the control run.
However, because the physics of the fully coupled simu-
lations evolve independently, the high-frequency variability
is not coherent between the control and transient simula-
tions. Therefore, for the CSM1.4 model, this is not an ideal
method. We follow the second approach, which takes
advantage of the temporal-scale separation between natural
variability and anthropogenic secular trend by applying a
low-pass filter to the high temporal resolution (monthly)
output of the model. This removes the natural short-term
variability in the ocean carbon cycle, revealing the under-
lying ‘‘anthropogenic’’ increase. This smoothed estimate of
Canthro is imperfect as it misses short-term variations in the
anthropogenic inventory caused by isopycnal heave.
[15] The magnitude of the short-term variability in Canthro

is investigated using a pair of historical (1958–2004)
ocean-only simulations [Lovenduski et al., 2007; Moore et
al., 2004]. We compare the true Canthro estimate, calculated
by differencing a control run and a transient run with
identical surface forcing and nearly identical physical cir-
culation, to a low-pass filter estimate of Canthro, calculated
using a spline fit to the transient run. The true Canthro

estimate and the low-pass filter estimate of Canthro for three
representative latitudes are shown in auxiliary material1

Figure S1. This analysis indicates that the mean error

1Auxiliary materials are available in the HTML. doi:10.1029/
2007JC004153.
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introduced by the low-pass filter approximation of Canthro is
0.37 mmol kg�1 per decade for the depth range 200–
2000 m. The mode RMS deviation of the low-pass filter
estimate from the true value for the ocean-only simulations
is 0.13 mmol kg�1 per decade (200–2000 m). These errors
are considerably smaller than either the natural variability or

the errors in the DC* and MLR techniques, emphasized in
sections 4 and 5. While the ocean-only simulations allow us
to more accurately quantify Canthro, the coupled carbon
model allows for the exploration of future carbon scenarios
which include changing ocean dynamics. For this study a
spline fit to CSM1.4 model output is used to calculate the
low-pass filter estimate of Canthro, DCanthro

predicted. Figure 1
shows CSM1.4 model DIC output for the A2 transient run
and the corresponding 100 years of the control run for three
representative model cells. Plotted in black are the spline
fits used to estimate DCanthro

predicted.
[16] In the surface ocean (upper 50 m) the A2 transient

run exhibits an average DIC increase of 1.36 mmol kg�1 a�1

for the model period corresponding to the decade with an
average atmospheric CO2 of 375 ppm (approximately
calendar years 2000–2010). This is in agreement with
present-day observed surface ocean DIC increases [Peng
et al., 1998; Sabine et al., 2004b]. The accumulation of
anthropogenic CO2 decreases rapidly with depth to an
average value of 0.13 mmol kg�1 a�1 (2500–5000 m)
during this period. The spatial distribution of anthropogenic
CO2 in the model is also consistent with Sabine et al.
[2004b], who estimate that 23% of anthropogenic ocean
carbon is stored in the North Atlantic (in the model, 26% is
in the North Atlantic), 9% is stored in the Southern Ocean
(in the model, 9% is in the Southern Ocean), and 50% is
found in the upper 400 m (in the model, 54% is above
400 m).
[17] We focus much of our analysis on a representative

hydrographic section in the Atlantic Ocean. Monthly model
output is extracted along a north-south transect at approxi-
mately 25�W, corresponding to the WOCE Atlantic hydro-
graphic section 16 (A16) cruise track [Johnson et al., 2005;
Johnson and Gruber, 2007; Peltola et al., 2005;Wanninkhof
et al., 2006b; U.S. CLIVAR/CO2 data are available at
ushydro.ucsd.edu]. This track was chosen because it bisects
the Atlantic Ocean and includes both the North Atlantic
Deep Water and Antarctic Intermediate Water formation
regions, two important portals for CO2 injection into the
deep ocean. To mimic the sampling strategy of the repeat
hydrography programs, the A16 transect analysis is con-
ducted using A2 transient run model output for 2 months
exactly 10 years apart (mean atmospheric CO2 = 375 ppm).
The arrows in Figure 1 indicate the months used for the A16
transect analysis. Similar to field data, this sampling scheme
aliases model DIC variability on timescales from monthly to
decadal. A global analysis is also conducted (section 7)
using annual mean model output extracted for 2 years
exactly 10 years apart; this aliases DIC variability on time-
scales from interannual to decadal.

3. Calculations

3.1. DC* and DCanthro
C*

[18] The DC* analysis was conducted using Gruber
et al.’s [1996] formulation of equation (2)

DC* ¼ C� Ceq S; q;Alk0
� �

jf CO2
¼ 280 ppm þ rC:O2 Osat

2 � O2

� �

þ 1=2 Alk0 � Alk
� �

þ rN:O2 Osat
2 � O2

� �� �
; ð6Þ

Figure 1. Time series of CSM1.4 model output along
the A16 transect at 245 m and (a) 54.9�N, (b) 2.2�S, and
(c) 29.1�S. The model output, with the drift removed, for
control run years 280–380 is shown in dark gray, the model
output for the A2 transient run is shown in light gray, and the
low-pass filter estimate of Canthro is shown in black. Arrows
indicate the times at which the model was sampled for the
decadal analyses.
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where rC:O2 and rN:O2 are the Redfield stoichiometric ratios
for Corg:O2 and N:O2, respectively. In order to be consistent
with the ocean biogeochemical model, Anderson and
Sarmiento’s [1994] modified Redfield ratios are used,
P:N:Corg:O2 = 1:16:117: �170. O2

sat is the oxygen saturation
concentration and is calculated using the equations of Weiss
[1970]. Ceq is the equilibrium DIC concentration given a
preindustrial atmosphere (atmospheric fCO2 = 280 ppm)
and is calculated as a function of potential temperature (q),
salinity (S), preformed alkalinity (Alk0), and pCO2

(280 ppm) using the CO2 System in Seawater code written
by Zeebe and Wolf-Gladrow [2001] (http://www.soest.
hawaii.edu/oceanography/faculty/zeebe_files/CO2_System_
in_Seawater/csys.html). Alk0 is the preformed alkalinity
and is calculated using a multiple linear regression fit to
upper ocean salinity (S), phosphorus (P), and oxygen (O2)
for years 101–450 of the control run. Model concentrations
are converted from volume-normalized units to conven-
tional mass-normalized units using a constant conversion
factor (1026 kg m�3). Results are presented in mmol kg�1

for depth profiles and mol m�2 for column inventories.
[19] The preindustrial air-sea disequilibrium term Cdiseq

(equation (3)) is assumed to remain constant with time
along an isopycnal surface such that Cdiseq(t1) = Cdiseq(t0)
[Gruber et al., 1996]. Therefore from equations (3) and (4),

DCC*
anthro ¼ DC* t1ð Þ � Cdiseq t1ð Þ

� �
� DC* t0ð Þ � Cdiseq t0ð Þ
� �

¼ DC* t1ð Þ �DC* t0ð Þ: ð7Þ

DC* and DCanthro
C* are calculated along isopycnal surfaces

using monthly mean model output roughly following the
A16 transect and then projected back into depth space.
The error introduced by this remapping is approximately
1.0 mmol kg�1. For the global calculations, DC* and
DCanthro

C* are calculated in depth space using annual mean
model output because of computational constraints. We
compare DC* and DCanthro

C* calculated in depth and
isopycnal space and conclude that while small differences
exist, both the magnitude of the DCanthro

C* estimate and the
major trends are the same for both calculations.

3.2. Multiple Linear Regression and DCanthro
MLR

[20] There is no standard set of physical and biogeochem-
ical variables for DIC MLR. Therefore the optimized MLR
parameters differ depending upon the chosen variables and
ocean region [Brewer et al., 1995; Friis et al., 2005]. As
neither nitrate nor silicate is explicitly included in the
model, we use oxygen and phosphate as the biogeochemical
variables to compute the estimated DIC concentration,
CMLR:

CMLR ¼ aþ bqþ cSþ dO2 þ ePO4; ð8Þ

where a–e are the optimized MLR parameters (p). Model
concentrations are converted from volume-normalized units
to conventional mass-normalized units (mmol kg�1) using a
constant conversion factor (1026 kg m�3). Because of

seasonal variability in the upper water column and
differences between the hydrographic properties of thermo-
cline and deep water masses, the MLR fits are done using
temperature, salinity, and nutrient output from 200 to
2000 m [Brewer et al., 1995; Sabine et al., 1999; Wallace,
1995]. Though these fits are then applied to the entire water
column, our analysis focuses on the results from 200 to
2000 m (see discussion in section 3.3). We perform a
stepwise MLR (after Brewer et al. [1995]) to determine the
number of variables needed to fit model DIC concentra-
tions. The ‘‘best fit’’ is determined by comparing the r2

value and the root-mean-square error of MLR fits using 1–4
variables. For CSM1.4 model output, including all four
variables (r2 = 0.99; standard deviation of residual for t0 ±
4.98 mmol kg�1), statistically improves the MLR fit to the
DIC concentrations relative to regressions using only a
subset of the variables.
[21] Two types of MLR analyses have been used to

estimate DCanthro (equation (5)). The MLR method most
commonly used by previous studies [Goyet and Davis,
1997; Peng, 2005; Peng et al., 2003; Sabine et al., 1999;
Wallace, 1995] uses the MLR parameters fit at time t0, p(t0),
and the data from time t1, data(t1), to compute CMLR(t1).
The estimated DIC concentration for t1 is then differenced
from the observations at t1:

DCMLR
anthro ¼ Cobs t1ð Þ � CMLR p t0ð Þ; data t1ð Þ½ 	: ð9Þ

The extended multiple linear regression analysis (eMLR),
introduced by Friis et al. [2005], replaces the DIC
observations at time t1 with a second MLR estimate using
parameters and data from t1.

DCeMLR
anthro ¼ CMLR p t1ð Þ; data t1ð Þ½ 	 � CMLR p t0ð Þ; data t1ð Þ½ 	: ð10Þ

[22] The eMLR method results in a much smoother
DCanthro field. However, this smoother field is not neces-
sarily more realistic. The MLR (equation (8)) represents
only that fraction of the total DIC variance that projects
linearly onto the chosen physical and biogeochemical
variables; the remaining variance falls into the regression
residuals,

CMLR
resid tið Þ ¼ Cobs tið Þ � CMLR p tið Þ; data tið Þ½ 	; ð11Þ

which include both random noise and real geochemical
signals. By analyzing the components of the MLR
individually, we find that the MLR variables are highly
correlated, leading to large cancellations between the terms
in equation (8). Substantial coherence between the MLR
variables indicates that they are nonorthogonal and so poor
basis functions for DIC. Coherence increases the likelihood
that real DIC signals will not be mapped onto the MLR
variables, and therefore potentially valuable information
will be left in the residuals.
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[23] The difference between the DCanthro
MLR (equation (9))

and DCanthro
eMLR (equation (10)) fields equals the MLR resid-

uals for time t1,

DCMLR
anthro �DCeMLR

anthro ¼ Cobs t1ð Þ � CMLR p t1ð Þ; data t1ð Þ½ 	
¼ CMLR

resid t1ð Þ: ð12Þ

The eMLR field is smoother because the ‘‘noise’’ of the
residuals has been removed. Any coherent pattern in the
residuals can lead to biases in the MLR estimate of
DCanthro. The traditional MLR estimate of anthropogenic
CO2 is biased because the MLR residuals from t0, Cresid

MLR(t0),
are incorporated into the estimate of DCanthro

MLR . The eMLR is
biased because it assumes that Cresid

MLR(t1) and Cresid
MLR(t0) will

cancel. This assumption is difficult to justify as the residual
fields are quite sensitive to the different regression
parameters at the different times. These biases are inherent
to the MLR technique and so apply to estimates of DCanthro

MLR

and DCanthro
eMLR for both the model simulations and field

observations.

3.3. Upper Water Column Variability

[24] High seasonal variability in the upper water column
makes it difficult to detect changes in anthropogenic carbon
inventories in this region. Both the DC* and MLR methods
have known issues in the upper 200 m leading to less
reliable estimates of DCanthro [e.g., Matsumoto and Gruber,
2005; Wallace, 1995]. To avoid errors introduced by sea-
sonal variability and to maintain consistency with the
typical application of the DC* and MLR methods, we
focus our analysis on the region below 200 m. For the
decade under study (average atmospheric CO2 of 375 ppm),
very little anthropogenic carbon has penetrated below

2000 m; hence we further limit our focus region to 200–
2000 m. Tables 1 and 2 present results for both the 1–2000
m and 200–2000 m intervals. Inclusion of the upper 200 m
significantly increases both the DIC RMS 1s value for the
control run, a measure of the natural variability in the
system, and the RMS difference between the estimated
and predicted DCanthro values. This confirms that the upper
water column has increased variability and that empirical
methods are not robust in this region. Unless otherwise
stated, all further analysis will be done for the 200–2000 m
depth range, including all anthropogenic carbon inventory
calculations.

4. Removing Natural Variability in the Model
Ocean Carbon System

[25] The primary function of empirical methods like DC*
and MLR is to remove the natural variability of the carbon
system in order to reveal the underlying anthropogenic
signal. To characterize the interannual to decadal variability
in the model, we calculate the DIC RMS variability for the
CSM1.4 model control run using mean monthly output. A
350 year period which spans the two transient runs is used
for this analysis (control run years 101 to 450). For each
model grid cell, the data are detrended by removing the
model drift using a low-pass filter and by removing the
average seasonal cycle. Figure 2a shows a contour plot
of the DIC 1s values for the section. The mean DIC
RMS variability is ±4.59 mmol kg�1 (1s, 0–2000 m) or
2.29 mmol kg�1 (1s, 200–2000 m). The mode of the RMS
variability for the entire transect, representative of the RMS
variability in the deep ocean, is ±0.62 mmol kg�1. The
surface ocean and high-latitude North Atlantic are regions

Table 1. Mean, Mode, and Maximum of Model DIC RMS Variability (1s) for Model DIC Output and the DC*, MLR, and eMLR

Techniquesa

Method

RMS

Mean (0–2000 m) Mean (200–2000 m) Mode Max (0–2000 m) Max (200–2000 m)

DIC Output 4.59 2.29 0.62 23.37 13.09
DC* 1.88 1.22 0.27 14.16 6.51
MLR 3.55 0.88 0.28 53.83 6.26
eMLR 0.65 0.31 0.16 2.86 1.04

aDIC, dissolved inorganic carbon; MLR, multiple linear regression; eMLR, extended multiple linear regression analysis. The 1s values are calculated
using years 101–450 of the 1000 year CSM1.4 control run extracted along the A16 transect, and they are measured in mmol kg�1. Mode and mean values
are based on grid cell values. As the empirical estimates are not robust above 200 m, the mean and maximum values for 200–2000 m are also given. The
mode is representative of the deep ocean variability.

Table 2. Comparison of Anthropogenic Techniques Showing the Mean, Mode, and Maximum of the Predicted Model DCanthro and the

DCanthro Estimatesa

Method

Anthropogenic Increase RMS, Estimated � Predicted

Mean (0–2000 m) Mean (200–2000 m) Max (0–2000 m) Max (200–2000 m) Whole Section 0–2000 m 200–2000 m

Predicted DCanthro 5.48 3.02 15.22 12.75
DC* 4.71 3.11 20.43 15.78 2.24 2.36 1.58
DC* Using PO4 4.48 3.16 25.45 17.04 4.15 4.19 2.59
MLR 9.01 3.29 96.93 32.43 12.50 13.49 5.04
eMLR 6.51 2.76 24.89 11.64 3.21 3.60 1.50

aResults were calculated using the DC*, DCPO4* , MLR, and eMLR techniques and measured in mmol kg�1. DCanthro values are calculated for a 10 year
period with an average atmospheric CO2 of 375 ppm using mean monthly model output extracted along the A16 transect. The RMS error for each estimate
relative to DCanthro

predicted is also given.
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of high variability, with 1s values reaching ±23.37 mmol
kg�1 (0–2000 m).
[26] To determine the processes driving these large natu-

ral shifts in DIC, we examine the correlation between DIC
anomalies and physical (temperature, salinity, and air-sea
gas exchange) and biogeochemical (oxygen, phosphorous,
export production) properties. We analyze the properties
controlling the month to month evolution of DIC using
property-property plots and covariance and multiple linear
regression analysis. The near-surface variability, particularly
at high latitudes, is driven by vertical or lateral shifts in the
boundary between water masses and by changes in water
mass air-sea disequilibrium. A histogram of the mean
monthly variance (not shown) exhibits high variability in
the North Atlantic Deep Water, and mode water formation
region, 40�N–60�N, is driven by large anomalies in the
spring following the winter convection period. Finally, a
spectral analysis indicates that interannual and decadal scale
variability in subpolar regions is modulated on centennial
timescales by model climate state; the interannual to decadal
variability in subtropics and tropics is more uniform over
the simulation.
[27] We evaluate the ability of the DC* method to

remove the natural variability in the model carbon cycle
by calculating a spatial map of RMS DC* for the monthly

outputs over a 350 year period of the control run. Nonzero
1s values reflect either errors in the DC* construct or
changes in air-sea disequilibrium (Cdiseq). The DC* method
is able to reduce but not fully eliminate the natural vari-
ability in surface waters, at the equator, and in the North
Atlantic Deep Water formation region, indicating areas
where potential biases may arise in DCanthro

C* (Figure 2b).
We perform a similar test of the two MLR techniques,
calculating maps of RMSDCMLR andDCeMLR for the same
model time period. The baseline MLR parameters p(t0)
(equation (8)) are computed using the mean DIC, nutrient,
and physical fields. For the 200–2000 m region the MLR
and eMLR reduce the natural RMS variability of the
inorganic carbon system by 2.5- and 7-fold, respectively,
a greater reduction than is achieved using the DC* method
(Table 1). However, direct comparison of the MLR, eMLR,
and DC* RMS values may be somewhat misleading as the
MLR regressions do not capture all of the variance of
original fields, as discussed in section 3.2. The highest 1s
MLR and eMLR values are observed in the upper 200 m
(Figures 2c and 2d), where the MLR technique is not robust.
Similar to the DC* method, the MLR displays high 1s
values in the North Atlantic Deep Water formation region,
indicating that the DCanthro

MLR estimate will most likely be
biased for this region because the MLR fit does not capture

Figure 2. Depth profiles of CSM1.4 model output along the A16 transect showing RMS variability (1s)
for (a) model dissolved inorganic carbon (DIC) output, (b) DC*, (c) multiple linear regression (MLR),
and (d) extended multiple linear regression (eMLR) calculated using years 101–450 of the 1000 year
control run. DC* is calculated in isopycnal space and projected back into depth space. Note the
difference in scale in model DIC output.
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a substantial amount of the natural variability. The mean,
maximum, and mode 1s values for the control run, and the
DC* method, and the MLR techniques are presented in
Table 1.

5. Detection and Attribution of Temporal
Trends in Anthropogenic CO2

[28] The ability of the DC* and the MLR techniques to
accurately estimate DCanthro is tested by comparing the
empirical estimates of the temporal change of anthropogenic
CO2 (DCanthro

C* , DCanthro
MLR , and DCanthro

eMLR) to the predicted
value for transient simulations, DCanthro

predicted. This comparison
is done for a 10 year period for which average Northern
Hemisphere atmospheric CO2 is approximately 375 ppm
(GLOBALVIEW-CO2 data are available at ftp://ftp.cmdl.
noaa.gov/ccg/co2/GLOBALVIEW). The following analysis
highlights issues and potential biases in the two techniques.
However, the magnitude of the errors for actual field data
may differ somewhat because of errors, such as sampling
and analytical errors, that are not accounted for in the
model.
[29] Similar to observations from repeat hydrography

cruises [e.g., Wanninkhof et al., 2006a], the natural vari-
ability in the ocean carbon system leads to spatial noise in
the plot of DDIC for any particular occupation (Figure 3a).
This ‘‘snapshot’’ change in DIC differs substantially from
the predicted invasion of anthropogenic CO2, DCanthro

predicted

(Figure 4a), which is calculated using the low-pass filter as
described in section 2. The RMS error of the estimated
DCanthro values from the predicted value is given by

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
DCestimate

anthro �DC
predicted
anthro

� �2

N � 1ð Þ

vuut
; ð13Þ

where N is the number of values being compared. The RMS
error for each technique is given in Table 2. Figures 4b, 4c,
and 4d show the difference between DCanthro

predicted and
DCanthro

C* , DCanthro
MLR , and DCanthro

eMLR, respectively. The average
percent error is calculated as

% error ¼
DCanthro �DC

predicted
anthro

���
���

DC
predicted
anthro


 100;

using only points with significant anthropogenic carbon,
DCanthro

predicted � 3 mmol kg�1 per decade. The average percent
error for decadal differences for the MLR, eMLR, and DC*
methods are 82.0%, 25.5%, and 24.1%, respectively. These
errors are consistent with previous error estimates for these
techniques [Friis et al., 2005; Gruber et al., 1996]. While
the average errors for the eMLR and DC* techniques are
similar, the distribution of the errors differ substantially. The
eMLR errors are evenly distributed over the entire transect,
whereas the DC* method performs better overall but has
regions with extremely large deviations from DCanthro

predicted.
[30] The DC* method is able to account for the majority

of the natural variability in the system and provides a fairly
accurate estimate of anthropogenic CO2 at low latitudes
and midlatitudes (40�S–30�N). However, at the high
latitudes, DCanthro

C* differs from the predicted value by up

to 11 mmol kg�1. These errors are large relative to the
mean and maximum predicted anthropogenic signal
(DCanthro

predicted (mean) = 3.02 mmol kg�1 and DCanthro
predicted

(max) = 12.75 mmol kg�1). This discrepancy could be
due to either errors in the DC* construct or in the assump-
tions made about the constancy of the air-sea disequilibrium
term (Cdiseq) along isopycnal surfaces.
[31] We look at changes in temperature, salinity, phos-

phorus, and oxygen over the 10 year study period to
explain the discrepancy between DCanthro

C* and DCanthro
predicted

at high latitudes. While temperature, salinity, and phospho-
rus exhibit only small changes over this time period, there
are large changes in apparent oxygen utilization (AOU =
O2
sat � O2) (Figure 3b). At high latitudes, areas with large

changes in AOU correlate well with regions in which
DCanthro

C* deviates from DCanthro
predicted. In particular, large

positive changes in AOU are associated with DC* under-
estimating the increase in anthropogenic CO2. Figure 5
shows the strong correlation between DCanthro

predicted �
DCanthro

C* and DAOU for the high latitudes (40�S–70�S
and 30�N–90�N). Both DCanthro

C* and DAOU are calculated
using mean monthly model output in isopycnal space and
then mapped back into depth space.

Figure 3. Depth profiles of CSM1.4 model output along
the A16 transect showing (a) the ‘‘snapshot’’ change in DIC
and (b) the change in apparent oxygen utilization (AOU)
for a 10 year period with an average atmospheric CO2 of
375 ppm. DAOU is calculated in isopycnal space and
projected back into depth space.
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[32] In the case where the DC* method reproduces the
predicted DCanthro signal, the data points in a plot of
DCanthro

predicted � DCanthro
C* versus DAOU will fall along the x

axis (represented by the light gray line in Figure 5).
Movement along this line is caused by changes in Cbio

(equation (2)), where increases in Cbio move data points to
the right and decreases in Cbio move points to the left
(represented by the light gray arrow in Figure 5). Deviations
from this ideal case are caused by changes in O2 and DIC
air-sea disequilibrium, for DIC represented by the Cdiseq

term (equation (3)). The DC* method assumes that oxygen
is always saturated in surface waters and therefore incor-
rectly attributes O2 air-sea disequilibrium (nonzero surface
AOU values) to biologic activity. An increase in AOU
disequilibrium, water leaving the surface with less O2 and
a higher AOU, is thus treated as an increase in biologic
activity and results in an underestimate ofDCanthro, and vice
versa. This moves data points off of the x axis with a slope
of rC:AOU, 117:170, (represented by the black arrow in
Figure 5). The DC* method also assumes that the prein-
dustrial DIC air-sea disequilibrium remains constant with
time; Cdiseq(t1) � Cdiseq(t0) from equation (7) equals zero, as
discussed above. Therefore an increase in Cdiseq, water

leaving the surface with more DIC, will result in an
overestimate of DCanthro and vice versa. This moves data
points in the DCanthro

predicted � DCanthro
C* versus DAOU plot

vertically (represented by the dark gray arrow in Figure 5).
The best fit line in Figure 5 (plotted as a dashed black line)
is therefore an amalgamation of the AOU disequilibrium
line (the black arrow) and the DCdiseq line (the dark gray
arrow). We conclude that the majority of the discrepancy
between DCanthro

C* and DCanthro
predicted at high latitudes is due to

variability in AOU disequilibrium in the surface waters,
which is not accurately accounted for by the DC* method.
This bias is partially offset by changes in the DCdiseq term,
which is also not accounted for by the DC* method. These
findings are similar to the findings of Wanninkhof et al.
[2006a].
[33] The bias in the DC* calculation due to O2 air-sea

disequilibrium can be eliminated by using PO4 instead of O2

to correct for changes in the biologic pump [Gruber and
Sarmiento, 2002]. This can be accomplished by substituting
the change in phosphorus, rC:PO4(PO4

0 � PO4) where PO4
0 is

preformed PO4, for rC:O2(O2
sat � O2) in equation (6).

Unfortunately, this substitution introduces a new set of
difficulties. Namely, we do not have a direct method for

Figure 4. Depth profiles of CSM1.4 model output along the A16 transect showing (a) DCanthro
predicted in

mmol kg�1, (b) the difference between DCanthro
predicted and DCanthro

C* , (c) the difference between DCanthro
predicted

and DCanthro
MLR , and (d) the difference between DCanthro

predicted and DCanthro
eMLR for a 10 year period with an

average atmospheric CO2 of 375 ppm. DCanthro
C* is calculated in isopycnal space and projected back into

depth space. The upper 200 m are shaded as the DCanthro estimates in this region are not robust.
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determining PO4
0. Hydrographic surveys also face the prob-

lem that the fractional uncertainties for PO4 measurements
are high, and studies have shown that C:P ratios vary with
depth because of preferential remineralization of phospho-
rus [e.g., Martin et al., 1987]. Here we estimate DCanthro

usingDC
C
PO4
*

anthro by assuming that PO4
0 remains constant along

isopycnal surfaces and therefore cancels in the calculation

of DC
C
PO4
*

anthro. Because of the inaccuracies of this assumption,

theDC
C
PO4
*

anthro estimate still differs significantly fromDCanthro
predicted

(Table 2).
[34] For the same 10 year period we calculate DCanthro

using both the MLR and the eMLR techniques. The MLR
coefficients and their 1s errors for t0 (time0) and t1 (time1)

are given in Table 3. The residual error for the MLR fit to
the model DIC concentrations at t0 is ±4.98 mmol kg�1 (r2 =
0.990, n = 1194) and at t1 is ±5.81 mmol kg�1 (r2 = 0.985,
n = 1194). These errors are approximately the same as the
residual error for MLR fits to field observations,�6 mmol kg�1

[Brewer et al., 1995; Friis et al., 2005]. However, the model
MLR residual error is most likely small because of a tight
correlation between changes in PO4 concentration and
biologic activity in the model. For field observations,
including either nitrate or silicate as MLR parameters is
often necessary to obtain a low residual error [Brewer et al.,
1995; Friis et al., 2005]. As neither nitrate nor silicate is
tracked in the model, we are forced to use only oxygen and
phosphorus as biological variables.

Table 3. MLR Parametersa

r2 RMSE, mmol kg�1 Intercept Q S O2 PO4

Time0 0.9903 4.98 400.39 ± 21.83 �4.26 ± 0.10 49.26 ± 0.58 �0.23 ± 0.01 77.22 ± 0.86
Time1 0.9854 5.81 456.02 ± 25.76 �3.36 ± 0.11 47.75 ± 0.68 �0.19 ± 0.01 77.61 ± 1.02

aThe r2 values, root-mean-square-error (RMSE), MLR parameters, and the parameter 1s errors for the MLR fit to model output at time0 (t0) and time1
(t1), where t1 � t0 is a 10 year period with an average atmospheric CO2 of 375 ppm.

Figure 5. Correlation between model (DCanthro
predicted �

DCanthro
C* ) and DAOU for a 10 year period with an average

atmospheric CO2 of 375 ppm caused by changes in air-sea
disequilibrium. Only data between 200 and 2000 m and at
the high latitudes (40�S–70�S, 30�N–90�N) are displayed.
DAOU and DCanthro

C* are calculated in isopycnal space and
projected back into depth space. If the DC* method
reproduced the predicted DCanthro signal exactly, the data
points would all fall along the x axis, the horizontal gray
line. Since the DC* method accounts for changes in Cbio,
increases in Cbio simply move data points horizontally to the
right (light gray arrow). Deviations from the x axis are
caused by changes in Cdiseq and AOUdiseq which move data
points off the x axis vertically (dark gray arrow) and with a
slope of rC:AOU, 117:170 (the black arrow), respectively.
The best fit line is plotted as a dashed black line and
represents an amalgamation between changes in AOUdiseq

and Cdiseq.

Figure 6. Depth profiles of CSM1.4 model output along
the A16 transect showing (a) DCanthro calculated using the
MLR technique for a 10 year period with an average
atmospheric CO2 of 375 ppm and (b) the model MLR
residuals for time1 (t1). The upper 200 m are shaded as the
DCanthro estimates in this region are not robust.
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[35] While DCanthro
MLR accurately reproduces the spatial

distribution of anthropogenic CO2 along the section, it
significantly overestimates the magnitude of the predicted
signal by greater than 15 mmol kg�1 in the upper 2000 m
(Figures 6a and 4c). The RMS error of DCanthro

MLR relative to
DCanthro

predicted is 5.04 mmol kg�1, significantly greater than all
other empirical methods tested in this study (Table 2). This
error is caused by large MLR residuals that bias the DCanthro

MLR

estimate, as discussed above. The residuals for the MLR fit
to t1 are shown in Figure 6b. By subtracting the MLR t1
residuals from the DCanthro

MLR estimate, one arrives at DCanthro
eMLR

(equation (12)), which better matches DCanthro
predicted. The

difference between DCanthro
predicted and DCanthro

eMLR is shown in
Figure 4d. The eMLR estimate displays both the same
spatial distribution and magnitude as the predicted signal.
However, as discussed above, the eMLR method produces a
biased DCanthro estimate when there is structure in the MLR
residuals.

6. Effects on Inventories

[36] Estimates of anthropogenic carbon are most fre-
quently presented as either column, basin, or global inven-
tories with different methods providing significantly
different inventory estimates. Here we compare the pre-
dicted temporal change in the column inventory calculated
from DCanthro

predicted to the column inventories calculated from
the DCanthro

C* , DCanthro
MLR , and DCanthro

eMLR estimates for the model
output extracted along the A16 transect for a decade
approximately equal to 2000–2010 (Figure 7). The MLR
inventory estimates deviate significantly from the predicted
inventory for the majority of the section with the largest
overestimate occurring in the North Atlantic between 40�N

and 60�N and the largest underestimate occurring between
0�N and 40�N and >80�N. The DC* and eMLR methods
more accurately reproduce the predicted inventory. At low
latitudes and midlatitudes (40�S–40�N) the DC* inventory
matches the predicted inventory, and the eMLR slightly
overestimates the column inventory. In the Southern Ocean,
the eMLR reproduces the predicted inventory, whereas
the DC* estimate displays significant deviations from the
predicted inventory. Finally, in the North Atlantic the DC*
technique overestimates the anthropogenic inventory, and
the eMLR underestimates the anthropogenic inventory. Our
previous analysis showed that DC* significantly under-
estimates DCanthro concentrations in the upper 500 m
between 40�N and 60�N relative to the predicted signal
(Figure 4b). However, the column inventory for this region
shows that DC* overestimates the DCanthro inventory
(Figure 7). Similarly, the model transect analysis showed
that the eMLR approach reproduces the predicted signal in
the North Atlantic (Figure 4d), whereas the inventory
analysis indicates that the eMLR significantly underesti-
mates DCanthro in this region (Figure 7). The discrepancies
between the depth distribution of DCanthro along the model
transect and the column inventories for the model transect
highlight the fact that small errors in these methods can
result in significant discrepancies in inventory calculations
when integrated over large depth ranges.

7. Global Analysis

[37] As a final check of the DC* and MLR techniques we
analyze their ability to estimate both spatial patterns in
water column inventory and the global inventory of anthro-
pogenic carbon in the oceans by applying them to the global
output of the CSM1.4 model. The natural variability of the
global carbon system is estimated by calculating the RMS
variability of the DIC column inventories for control run
model years 101 to 450 using detrended annual mean model
output. The highest variability occurs in the mode and deep
water formation regions: the North Atlantic, the northwest
Atlantic, and the northwest Pacific oceans (Figure 8a). The
boundary between the Southern Ocean and the Indo-Pacific
oceans is also a region of increased variability. Similar to
the transect analysis, we test the ability of the DC* and
MLR techniques to remove the natural variability in the
model ocean carbon system by calculating DCanthro

C* ,
DCanthro

MLR , and DCanthro
eMLR for the control run using detrended

annual mean model output for model years 101 to 450. The
MLR calculations are done by basin (Atlantic, Pacific,
Southern Ocean, Indian, and Arctic) as different water
masses display different regional relationships between
temperature, salinity, and nutrients. This basin approach
reduces the RMS 1s difference between DCanthro

predicted and
DCanthro

MLR column inventories by 16.73 mol m�2 compared to
the RMS difference for a single-MLR fit. All MLR fits are
done for 200–2000 m, and baseline MLR parameters p(t0)
(equation (8)) are computed using the mean DIC, nutrient,
and physical fields. The results are similar to those of the
model transect analysis. The DC* method is able to remove
the majority of the natural variability in the ocean carbon
system but fails to account for some variability in the mode
and deep water formation regions, particularly in the North

Figure 7. Comparison between predicted model column
inventory (200–2000 m) of DCanthro and latitude inven-
tories (200–2000 m) of DCanthro calculated using the DC*,
MLR, and eMLR techniques for model output extracted
along the A16 transect. Inventories are for a 10 year period
with an average atmospheric CO2 of 375 ppm.
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Atlantic (Figure 8b). The MLR approaches also reduce the
natural DIC variability but fail to account for some of the
variability in the North Atlantic, South Atlantic, and North
Indian oceans (Figures 8c and 8d). These areas, where the
empirical methods are unable to remove all the variability in
the natural carbon system, indicate regions where these
empirical methods might not produce an accurate estimate
of DCanthro.
[38] Using a low-pass filter applied to the annual mean

model output for each model cell, we estimate the pre-
dicted anthropogenic signal for the global output of the
transient run, 2000–2100, and calculate the change in the
column inventories for the decade with an average atmo-
spheric CO2 of 375 ppm. The predicted estimate of the
global accumulation of anthropogenic carbon is 23.2 Pg C
per decade or 12.1 Pg C per decade for 200–2000 m. The
spatial distribution of the predicted accumulation for 200–
2000 m is shown in Figure 9a. The difference between the
column inventories of the model DIC output for the decade
under study yields a similar column inventory of 22.7 Pg
C per decade or 11.7 Pg C per decade for 200–2000 m.
However, there are significant discrepancies between the
predicted distribution of anthropogenic CO2 and the
‘‘snapshot’’ difference in DIC. Applying the DC*, MLR,
and eMLR techniques to the global model output yields
global inventory estimates for 200–2000 m of 14.3, 14.8,
and 13.6 Pg C per decade, respectively. The differences
between DCanthro

predicted and DCanthro
C* , DCanthro

MLR , and DCanthro
eMLR

are shown in Figures 9b, 9c, and 9d, respectively. Both

methods capture the basic trends of the predicted signal but
tend to overestimate DCanthro in some regions and under-
estimate DCanthro in others. For example, the DC* method
overestimates DCanthro in the North Atlantic and South
Pacific and slightly underestimates DCanthro in regions of
the Southern Ocean. On the other hand, the eMLR under-
estimates DCanthro in the North Atlantic and overestimates
DCanthro in the South Atlantic. The MLR shows the largest
deviations from the predicted values (note the scale dif-
ference in Figure 9c) with large overestimates in the North
Atlantic and North Indian Ocean and large underestimates
in the tropical Atlantic, in the southwest Pacific, and along
the Southern Ocean boundary.

8. Discussion and Summary

[39] Using the output of a coupled carbon-climate model,
we evaluate the ability of empirical techniques to accurately
estimate the uptake of anthropogenic carbon, DCanthro, on
decadal timescales in the presence of natural variability. This
analysis shows that the DC* and the extended MLR techni-
ques have similar average errors for decadal differences
(24% and 26%, respectively) and similar RMS errors (but
somewhat different error sources and patterns), and both
reproduce the spatial and temporal trends of the predicted
anthropogenic signal for the majority of the ocean. However,
this study also identifies regions where the empirical esti-
mates of DCanthro may introduce errors. Specifically, the
DC* estimates of DCanthro may contain errors at high

Figure 8. Spatial maps of CSM1.4 model output showing DIC column inventory (200–2000 m) RMS
variability (1s) for (a) model DIC output, (b) DC*, (c) MLR, and (d) eMLR calculated using years 101–
450 of the 1000 year control run.
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Figure 9. Spatial maps of CSM1.4 model output showing column inventories (200–2000 m) in mol
m�2 of (a) DCanthro

predicted, (b) the difference between DCanthro
predicted and DCanthro

C* , (c) the difference between
DCanthro

predicted and DCanthro
MLR , and (d) the difference between DCanthro

predicted and DCanthro
eMLR for a 10 year period

with an average atmospheric CO2 of 375 ppm. Note the difference in scale for Figures 6a and 6c.
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latitudes, particularly in mode and deep water formation
regions, because of variations in O2 and DIC air-sea dis-
equilibrium. The MLR techniques are biased by structure in
the MLR residuals, resulting from coherence between the
MLR variables. Similar to the DC* method, this is partic-
ularly apparent in mode and deep water formation regions
where the residuals show significant degrees of structure. In
addition, both empirical methods have difficulty in the upper
200 m because of high seasonal variability. Because of these
potentially substantial errors in the empirical estimates of
DCanthro, we suggest that multiple empirical techniques
should be used to estimate increases of anthropogenic carbon
in the ocean. Specifically, careful attention should be paid to
regions with significant differences between empirical esti-
mates as this indicates that neither estimate is particularly
robust and that further investigation is needed to fully
characterize the underlying natural variability of the system.
[40] The results of this study also have significant impli-

cations for repeat hydrography programs, such as CLIVAR/
CO2. While decadal occupations might be sufficient to
estimate the temporal change in Canthro for some regions

of the ocean, this study suggests that there are regions where
more frequent observations may be needed in order to better
constrain the natural variability of the carbon system and
therefore the anthropogenic signal, for example, in mode,
intermediate, and deep water formation regions, such as in
the subpolar North Atlantic. With increased temporal reso-
lution, short-term natural variability in the ocean carbon
system can be separated from the longer-term anthropogenic
trend using approaches similar to the spline-fitting method
presented in section 2 or by using the detailed record to
more accurately attribute changes in DIC to biological and
physical processes.
[41] A semivariogram analysis indicates that highly var-

iable regions, such as the subpolar North Atlantic, have very
short correlation timescales, on the order of half a year
(Figure 10), indicating that subannual sampling is necessary
to capture the full variability of the system. This is con-
firmed by an analysis of the fraction of the total variance
captured under a variety of sampling scenarios ranging from
every 2 months to every 10 years. In regions with low
variability (e.g., 29�S, 415 m), subsampling once every

Figure 10. Correlation timescales for CSM1.4 model output along the A16 transect at 245 m and
54.9�N showing (a) raw DIC data for a 20 year period with an average atmospheric CO2 of 375 ppm and
(b–d) the timescales on which data in this region become decorrelated. The fraction of total variance
(Figure 10b) compares the variability for a 10 year period captured by subsampling on timescales ranging
from 2 months to 10 years to the total variability. The significant decrease in RMS/(total RMS) between
9 months and 1 year indicates that subannual sampling is necessary to capture the full variability in the
system. The semivariance and best fit semivariogram of deseasonalized, detrended DIC data (Figure 10c)
and DC* data (Figure 10d) are also shown. The correlation timescales indicate the range over which
samples are correlated (0.44 and 0.36 years, respectively).
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2 years captures nearly all of the variability in the system
(not shown). However, in regions of high variability (e.g.,
55�N, 245 m), subsampling once a year captures only 78%
of the total variability when raw data is analyzed and 86%
of the total variability when deseasonalized data is analyzed
(Figure 10). As such subannual sampling is impractical
using traditional ship-based methods, we recommend that
reoccupations be augmented where possible with alternative
sampling platforms (e.g., moorings and profiling floats) and
coherence with other biogeochemical variables such as O2

and nutrients.
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Yvette, Paris.

Najjar, R., et al. (2007), Impact of circulation on export production, dis-
solved organic matter, and dissolved oxygen in the ocean: Results
from Phase II of the Ocean Carbon-cycle Model Intercomparison Project
(OCMIP-2), Global Biogeochem. Cycles, 21, GB3007, doi:10.1029/
2006GB002857.

Peacock, S., M. Maltrud, and R. Bleck (2005), Putting models to the
data test: A case study using Indian Ocean CFC-11 data, Ocean Modell.,
9, 1–22.

Peltola, E., et al. (2005), , Inorganic carbon, nutrient, and oxygen data from
the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic
Ocean: CLIVAR CO2 section A16N_2003A (4 June–11 August, 2003),
ORNL RNL/CDIAC-149 NDP-085, 20 pp., Carbon Dioxide Inf. Anal.
Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://cdiac.
ornl.gov/oceans/ndp_085/NDP-085.html)

Peng, T. H. (2005), Anthropogenic CO2 in the ocean, Sci. Mar., 69, 85–96.
Peng, T. H., R. Wanninkhof, J. L. Bullister, R. A. Feely, and T. Takahashi
(1998), Quantification of decadal anthropogenic CO2 uptake in the ocean
based on dissolved inorganic carbon measurements, Nature, 396, 560–
563.

C03019 LEVINE ET AL.: DETECTION OF ANTHROPOGENIC CO2

15 of 16

C03019



Peng, T. H., R. Wanninkhof, and R. A. Feely (2003), Increase of anthro-
pogenic CO2 in the Pacific Ocean over the last two decades, Deep Sea
Res., Part II, 50, 3065–3082.

Quay, P., R. Sonnerup, T. Westby, J. Stutsman, and A. McNichol (2003),
Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a
tracer of anthropogenic CO2 uptake, Global Biogeochem. Cycles, 17(1),
1004, doi:10.1029/2001GB001817.

Sabine, C. L., and R. A. Feely (2001), Comparison of recent Indian Ocean
anthropogenic CO2 estimates with a historical approach, Global Biogeo-
chem. Cycles, 15(1), 31–42.

Sabine, C. L., R. Key, K. Johnson, F. Millero, A. Poisson, J. Sarmiento,
D. Wallace, and C. Winn (1999), Anthropogenic CO2 inventory of the
Indian Ocean, Global Biogeochem. Cycles, 13(1), 179–198.

Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee,
T.-H. Peng, B. Tilbrook, T. Ono, and C. S. Wong (2002), Distribution of
anthropogenic CO2 in the Pacific Ocean, Global Biogeochem. Cycles,
16(4), 1083, doi:10.1029/2001GB001639.

Sabine, C. L., et al. (2004a), The oceanic sink for anthropogenic CO2,
Science, 305, 367–371.

Sabine, C. L., R. A. Feely, Y. W. Watanabe, and M. Lamb (2004b), Tem-
poral evolution of the North Pacific CO2 uptake rate, J. Oceanogr., 60,
5–15.

Touratier, F., and C. Goyet (2004a), Applying the new TrOCA approach
to assess the distribution of anthropogenic CO2 in the Atlantic Ocean,
J. Mar. Syst., 46, 181–197.

Touratier, F., and C. Goyet (2004b), Definition, properties, and Atlantic
Ocean distribution of the new tracer TrOCA, J. Mar. Syst., 46, 169–179.

Touratier, F., C. Goyet, C. Coatanoan, and C. Andrié (2005), Assessments
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