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[1] Documenting the mass flux through convergent plate
margins is important to the understanding of petrogenesis
in arc settings and to the origin of the continental crust,
since subduction zones are the only major routes by
which material extracted from the mantle can be returned
to great depths within the Earth. Despite their
significance, there has been a tendency to view
subduction zones as areas of net crustal growth.
Convergent plate margins are divided into those
showing long-term landward retreat of the trench and
those dominated by accretion of sediments from the
subducting plate. Tectonic erosion is favored in regions
where convergence rates exceed 6 ± 0.1 cm yr�1 and
where the sedimentary cover is <1 km. Accretion
preferentially occurs in regions of slow convergence
(<7.6 cm yr�1) and/or trench sediment thicknesses
>1 km. Large volumes of continental crust are subducted

at both erosive and accretionary margins. Average magmatic
productivity of arcs must exceed 90 km3 m.y.�1 if the
volume of the continental crust is to be maintained.
Convergence rate rather than height of the melting column
under the arc appears to be the primary control on long-term
melt production. Oceanic arcs will not be stable if crustal
thicknesses exceed 36 km or trench retreat rates are >6 km
m.y.�1. Continental arcs undergoing erosion are major sinks
of continental crust. This loss requires that oceanic arcs be
accreted to the continental margins if the net volume of crust
is to be maintained. INDEX TERMS: 8105 Tectonophysics:

Continental margins and sedimentary basins (1212); 8110

Tectonophysics: Continental tectonics—general (0905); 8125

Tectonophysics: Evolution of the Earth; 3025 Marine Geology

and Geophysics: Marine seismics (0935); 1020 Geochemistry:

Composition of the crust; KEYWORDS: tectonics, subduction,

magmatism.
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1. INTRODUCTION

[2] Documenting the origin and fate of the continental

crust is a key goal of the earth sciences, central to our

comprehension of how the Earth has chemically differenti-

ated over long periods of geological time. Despite this

importance our understanding of the crust’s history is still

vague. Although magmatic productivity at mid-ocean ridges

exceeds that in the magmatic arcs that are developed along

convergent plate boundaries, understanding how melt is

transferred to the crust in convergent plate settings is more

important to constraining the origin and evolution of the

continental crust. This is because oceanic lithosphere is

usually destroyed by subduction, while tectonic and geo-

chemical evidence indicates that active margins are likely

the principal source of the continental crust [e.g., Dewey

and Windley, 1981; Taylor and McLennan, 1985; Rudnick

and Fountain, 1995; Barth et al., 2000]. However, any

attempt to mass balance the mass flux in arc systems must

also account for the fact that subduction zones represent the

only significant pathway by which continental material can

be returned to the upper mantle. Because the involvement of

subducted sediments in the generation of arc magmas is

now widely documented [e.g., Woodhead and Fraser, 1985;

Tera et al., 1986; Plank and Langmuir, 1993], it is impor-

tant to quantify the degree of this subduction if the propor-

tion of subducted crust recycled through the arcs is to be

separated from that returned to the upper mantle. In addition

to sediment subduction, evidence is now mounting that

tectonic processes may remove significant volumes of

continental crust at subduction zones and transport them

to great depths in the Earth. Quantifying how much crust is

subducted to the roots of volcanic arc systems, and even

back into the upper mantle, is important to the general

problem of how melt is produced in arc settings, as well as

whether large volumes of existing continental crust are ever

recycled back into the mantle over long periods of geologic

time. If significant volumes of crust are lost at modern
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convergent margins, then new crust must be generated at

faster rates if the current volume of the continental crust is

to be sustained.

[3] In this contribution we attempt to quantify the mass

flux through the major subduction zones of the Earth in

order to understand the controls that cause convergent

margins to either accrete continental material delivered by

the subducting plate or, alternatively, to subduct the trench

sediment pile and even erode the basement of the overriding

forearc. In practice, this means estimating the composition,

rate, and distribution of the sediment and rock input into the

major subduction zones and comparing this to the output

through the volcanic arc systems in each individual system

and on a global basis.

[4] Convergent margins appear to fall into one of two

classes, accretionary and erosive (Figure 1). Shortly after

the start of the plate tectonic revolution, it was recognized

that some active margins were associated with thick se-

quences of tectonized oceanic and trench sedimentary rocks

that were inferred to have been off scraped from the

subducting oceanic plate during active convergence [e.g.,

Seely et al., 1974; Hamilton, 1969; Ernst, 1970; Karig and

Sharman, 1975]. Similar sequences were recognized in

ancient orogenic belts and inferred, together with ophiolites,

to mark the location of former oceanic tracts [e.g., Dewey

and Bird, 1970; Mitchell and McKerrow, 1975]. At the

same time it was recognized that at other margins oceanic

and trench sediments might be subducted [Coats, 1962]

along with fragments of crystalline crust tectonically re-

moved from the overriding plate [Miller, 1970; Murauchi,

1971; Scholl et al., 1977; Hilde, 1983]. Nonetheless, a

common view of active plate margins continued to depict

these as regions of dominant sediment accretion, even in

regions where the sediment cover of the oceanic plate was

very thin (e.g., Marianas [Karig, 1982]).

[5] However, during the late 1980s and 1990s, continued

seismic surveying, coupled with drilling by Deep Sea

Drilling Project (DSDP) and Ocean Drilling Program

(ODP) in a variety of forearc settings, began to reveal that

sediment accretion was by no means a ubiquitous feature of

convergent margins [Hussong and Uyeda, 1981; von Huene

et al., 1980; Nasu et al., 1980]. Dredging of oceanic

volcaniclastic, volcanic, intrusive, and even serpentinized

and fresh mantle peridotite rocks from the trenches of the

western Pacific [e.g., Fisher and Engel, 1969; Bloomer,

1983; Fryer et al., 1985; Bloomer and Fisher, 1987] dem-

onstrated that no long-term sediment accretion was occur-

ring in these areas (Figure 1). von Huene and Lallemand

Figure 1. Schematic cartoons showing the features common to the two basic types of active margin:
(a) accretionary and (b) erosive. Accretionary margins, such as Cascadia, are characterized by forearc
regions composed of thrusted and penetratively deformed trench and oceanic sediments that often
develop mud diapirism and volcanism because of sediment overpressuring. Gas hydrate zones are also
commonly associated with structures in the wedge; in contrast, erosive plate margins, such as Tonga, are
marked by steep trench slopes, composed of volcanic, plutonic, and mantle rocks. Sedimentary rocks are
typically limited to the forearc basin, where they may be faulted but are not strongly sheared in the
fashion of an accretionary wedge. In the Marianas, serpentinite mud volcanism is recorded.
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[1990] showed that such forearcs were not accreting and

were even actively losing parts of their crystalline basement.

von Huene and Lallemand [1990] used forearc subsidence

to demonstrate long-term landward retreat of the trench

along the Peru and Honshu (Japan) margins, requiring

significant tectonic erosion of the underside of the overriding

plate. This erosion was presumed to relate to the abrasion of

the forearc crust by the basement of the subducting oceanic

plate, as suggested by Hilde [1983].

[6] In their seminal review, von Huene and Scholl [1991]

highlighted the importance of nonaccretionary active mar-

gins, which they considered to span 19,000 km. These

authors also noted that even in accretionary active margins

�70% of the sediment column is likely subducted to great

depths below the forearc. This result implied a major degree

of continental crustal recycling through arc magmatism in

the subduction zones. Although it is largely continentally

derived clastic turbidites that are accreted and pelagic sedi-

ments that are subducted [e.g., Moore, 1989; Le Pichon et

al., 1993], it is, nonetheless, true that all the sediments on

the oceanic plate are composed of material extracted from

the mantle and delivered into the oceans from the continents

either by fluvial or eolian transport or in a dissolved form,

such as Ca2CO3. Thus any sediment not accreted within the

forearc represents crustal material subducted to the mag-

matic roots of the volcanic arc or returned to the mantle.

[7] Although for the purpose of this paper we define

margins as being accretionary or erosive, we do so recog-

nizing that in any given system both processes may be

occurring, either switching through time or at the same time

in different parts of the subduction zone. It is common to

find small accretionary complexes in the trench of subduc-

tion zones where tectonic erosion is dominating under the

forearc (e.g., the Aleutians and Chile [Scholl et al., 1987;

von Huene et al., 1999; Laursen et al., 2002]). In these

intermediary examples, accretion at the trench axis may

result in no net retreat of the trench relative to a fixed point

on the overriding plate. Indeed, oceanward growth of the

forearc wedge may even occur. Nonetheless, because of

tectonic erosion of the underside of the forearc wedge,

landward parts of the forearc may be in a state of long-

term subsidence due to crustal loss. For the purpose of this

paper an erosive margin is defined as one in which a fixed

point on the forearc approaches the trench through time, as a

result of net crustal loss through tectonic erosion, regardless

of whether there is accretion at the trench axis itself.

2. DEFINITION OF AN ACCRETIONARY
AND EROSIVE MARGIN

[8] In this study we calculate mass balances for subduc-

tion zones over relatively long periods of geological time

(>10 m.y.) because of the nature of the geologic record that

allows the rates of mass flux to be constrained. We thus

define a margin as being accretionary only if it is has

experienced net accretion over such periods of time in the

recent geologic past, i.e., a margin in which a fixed point on

the forearc migrates upward and/or landward over long

periods of geological time. Accretion occurs because of

the transfer of material from the subducting plate into the

overriding plate, either by frontal off scraping at the trench

axis or by underplating of the forearc wedge at greater

depths. It is important to recognize the long time duration

implied by this definition, because even accretionary mar-

gins can experience short-term periods of erosion (e.g.,

Nankai Trough), for example, precipitated by collision of

seamounts, which are not typical of the margin’s develop-

ment over periods of 10 m.y. or more. Likewise, erosive

margins can experience short-term accretion following

collision with seamounts, material that is then removed by

the background steady state tectonic erosion [e.g., Johnson

et al., 1991]. Tectonized debris aprons, comprising material

eroded from and then reincorporated into the overriding

plate, such as those recognized offshore Costa Rica

[Shipboard Scientific Party, 1997], would not constitute

an accretionary complex in this study, as this material never

formed part of the subducting plate. We also classify as

erosive those margins that are characterized by older accre-

tionary complexes but which are now in a state of long-term

(>10 m.y.) trench retreat due to the removal of material from

the underside of the forearc wedge (e.g., Honshu and

Mexico). In this study we use the term accretionary and

erosional in reference to the entire forearc region trench-

ward of the volcanic arc. Thus margins with no clear

accretionary wedge at the trench but whose forearcs are

experiencing underplating and uplift driven by the net

transfer of material from the subducting plate into the

overriding plate would be considered accretionary. The

key discriminant for this study is whether the net volume

of crust in a forearc wedge is growing or decreasing as a

result of tectonic activity transferring mass from one plate to

another. This difference in net growth or loss is often

manifest by a fixed point within the forearc experiencing

net landward or trenchward motion over long periods of

geologic time. Because this definition emphasizes the

evolution of the whole forearc, rather than just the region

of the trench, our geometrical analysis of different subduc-

tion systems is chosen to examine the forearc over large

distances, which should reflect the dominant tectonic pro-

cess under the forearc. For example, while an erosive

margin might develop a small accretionary prism at the

trench axis, this will not influence the overall taper of the

margin or bathymetric slope over 50–100 km, which is

instead controlled by the erosive tectonics under the forearc.

3. TECTONIC EROSION

[9] Since von Huene and Scholl [1991] provided a mass

balance for the global subduction system, new work on the

tectonics of forearc regions has continued to emphasize the

importance of subduction erosion in removing material

from active plate margins. Subduction erosion is often

envisaged as being due to strong coupling between the

overriding and subducting plate, although processes other

than high friction abrasion, such as high fluid pressure, may

drive the subduction erosion process in some regions, such
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as northern Chile [von Huene and Ranero, 2003]. Material

is known to be removed from under the marine and coastal

sections of many forearcs, and possibly further inland too,

where there is usually no sediment deposited to record the

subsidence. This rock may be delivered to the magmatic

roots of the volcanic arc and possibly returned back into the

upper mantle. Lallemand [1995, 1998] argued that strong

coupling between the downgoing and overriding plates

around the Pacific Rim results in rapid tectonic erosion

(4–10 km m.y.�1) over long periods of geologic time.

While supporting a generally erosive model for Pacific

margins, Clift and MacLeod [1999] used subsidence and

structural data from the Tonga forearc to argue for a slower

trench retreat rate than favored by Lallemand [1995, 1998]

of 1.5 km m.y.�1 since the Oligocene, rising to an average

long-term rate of 3.8 km m.y.�1 after accounting for the

indentation caused by collision of the aseismic Louisville

Ridge with the Tonga forearc. Slightly higher long-term

rates of trench retreat have recently been estimated at

4.7 km m.y.�1 for the South Sandwich islands [Vanneste

and Larter, 2002], another oceanic subduction system.

[10] The rates of tectonic erosion of plate margins in

continental arc settings have also undergone revision. von

Huene and Lallemand [1990] estimated an average trench

retreat rate of 2.5–3.5 km m.y.�1 since 20 Ma along the

Peru margin and 3.0 km m.y.�1 for the Japan Trench since

16 Ma. As before, these rates represent the long-term

evolution of the margin and not a specific subduction event.

Similarly, Vannucchi et al. [2001] calculated an average

trench retreat rate of 3 km m.y.�1 for the Costa Rican

forearc since 17 Ma, based on the subsidence history of

coastal sediments to great depth within the forearc slope.

Further studies demonstrated that much of the subsidence

occurred during the last 5.0–6.5 m.y., resulting in the loss

of 50–60 km of forearc and giving a recent trench retreat of

8 km m.y.�1 [Vannucchi et al., 2003]. Laursen et al. [2002]

estimated a trench retreat rate of 3 km m.y.�1 for central

Chile since 10 Ma, which is close to the 3.1 km m.y.�1 rate

calculated by Clift et al. [2003c] for the Lima Basin of the

Peruvian forearc since the Eocene (47 Ma). This rate is

consistent with the earlier study of Peru by von Huene and

Lallemand [1990]. However, tectonic erosion in the Lima

Basin area appears to have accelerated since 11 Ma when

the Nazca Ridge began to collide with the forearc, pushing

average rates since that time to 10 km m.y.�1. Clearly, ridge

collision events have been key in controlling long-term

(>10 m.y.) tectonic erosion rates.

[11] Most recently, a reevaluation of the vertical tectonics

offshore Guatemala based on DSDP coring data now shows

that these regions are also areas of long-term subsidence

(Figure 2) [Vannucchi et al., 2004]. The steady subsidence

of the forearc basement in each case reflects the migration

of the drill site closer to the deep water of the trench through

time, driven by the subduction erosion that causes any given

part of the forearc to subside because of basal tectonic

erosion of the forearc wedge and to approach the trench

because of frontal tectonic erosion of the plate margin. In

practice, the subsidence history of a drill site represents a

fixed point migrating through the eroding trench system.

Assuming that trench slopes remained approximately con-

stant during the Neogene, the reconstructed vertical sub-

sidence of these forearcs implies a landward trench retreat

rate that averages 0.9 km m.y.�1 in Guatemala. This rate

is based on the recognition of sediment on the trench

slope that was originally deposited in shallower water

(i.e., 600–1000 m at DSDP Site 569, middle bathyal zone).

Given the age of the sediment (i.e., 23.8 Ma, top Oligocene)

and the horizontal distance between the current location

and modern day depth equivalent on the forearc slope

(�36 km), a long-term rate of trench retreat can be calculated

at 0.9 km m.y.�1. Offshore southern Mexico, benthic fora-

minifer assemblages within sediments recovered at DSDP

Sites 489 and 493 indicate that they were deposited in 50- to

150-m water depths at 23 Ma (early Miocene [Shipboard

Scientific Party, 1981]). Although McMillen and Bachman

[1982] argued for great water depths (>3000 m) on the basis

of the lack of carbonate material, the lack of deeper water

microfossils mixed with the shallow water fauna, together

with a lack of sedimentary evidence for redeposition, argues

against a deep water origin. Therefore, because DSDP Sites

489 and 493 now lie in 1268- and 675-m water depth,

respectively, the deepening of the water depth implies a loss

of �25 km of forearc since 23 Ma (25 km is the horizontal,

trench-perpendicular distance between the 50- and 1200-m

isobaths in the region of the drill sites), a long-term rate of

trench retreat of �1 km m.y.�1. This figure is somewhat

lower than inferred from the �4 km of water depth increase

since 8 Ma reconstructed by Mercier de Lepinay et al.

[1997], which implies an increase in the rate of trench retreat

since that time compared to the 8–23 Ma period. Our

calculated long-term trench retreat rates in Mexico and

Guatemala are modest compared to those seen in Tonga,

South Sandwich, Honshu, Chile, or Peru. Nonetheless, the

observation of subsidence and trench retreat is a crucial one

because Mexico in particular has for many years been

considered a classic accretionary plate margin [e.g., Karig

et al., 1978; Moore et al., 1979; Shipley et al., 1980].

4. ALTERNATIVE MECHANISMS FOR FOREARC
SUBSIDENCE

[12] Other tectonic processes, apart from basal tectonic

erosion of the forearc crust, could explain the subsidence

observed in many forearc regions. Extension of a forearc

wedge may occur because of gravitational collapse of an

unstable steep tapered wedge [Platt, 1986]. If the basal

friction along the plate interface is reduced, then this will

aid gravitational collapse [Aubouin et al., 1984] and could

also account for the basement subsidence that is recon-

structed by subsidence analysis of drilling data. However,

this explanation is hard to propose for large-scale subsidence

lasting 20–30 m.y., as there is a limit to how narrow a

forearc taper can be sustained. The amount of extension

needed to account for the degree of subsidence recorded in

those forearcs where data are available would require exten-
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sion far beyond that recorded by any normal faulting seen in

seismic profiles of the margin. For example, seismic profiles

across the Costa Rican forearc show only slight normal

faulting of the acoustic basement [e.g., Ranero and von

Huene, 2000], contrasting with the large subsidence mea-

sured by Vannucchi et al. [2001]. In that case the crustal

extension implied by the subsidence can be accounted for by

basal erosion of the forearc crust and not horizontal exten-

sion. Moreover, any narrowing of the forearc wedge taper by

extension would also have to keep pace with and exceed the

thickening of the wedge caused by continued accretion in

order to produce net subsidence. Because the present bathy-

metric slope of the Mexican forearc is steep and the wedge

taper angle is 13�, compared, for example, to 6� in the classic
accretionary margin of Cascadia (Tables 1 and 2), it is

difficult to envisage that this wedge and slope were much

steeper again in the late Oligocene. The Mexican taper is,

however, similar to the 11� measured in the erosive Tonga

margin [Dupont and Herzer, 1985], although locally the

trench slope in Tonga is even steeper, where the margin is in

collision with the Louisville Ridge and thus in a state of

strong tectonic erosion [e.g., Lonsdale, 1986; Ballance et al.,

1989]. Another potential mechanism for driving forearc

extension and seaward trench migration is slab rollback

[Uyeda and Kanamori, 1979]. This process would neces-

sarily narrow the taper of the forearc unless subduction

accretion kept pace with trench retreat or unless spreading

in the back arc as well as in the forearc accommodates the

extension. In several western Pacific arc systems, slab

rollback and back arc spreading appear to be operating at

the same time as active tectonic erosion of the forearc. The

fact that basal tectonic erosion, removing material from the

front of the plate, is the primary mechanism for driving

subsidence is also shown by the migration of volcanic arcs

through time. Although variations in slab dip can cause the

location of the arc magmatic front to migrate relative to the

trench, over long periods of time a landward retreat of the arc

is to be expected if tectonic erosion is dominant. In Central

Figure 2. Sediment-unloaded depths to basement at a series of Ocean Drilling Program (ODP) Deep Sea
Drilling Project (DSDP) wells in the Guatemalan, Mexican, Tonga, and Peruvian forearcs. Vertical lines
show the uncertainty in the water depth estimates derived from benthic foraminifer assemblages
[Vannucchi et al., 2004; Clift and MacLeod, 1999; Clift et al., 2003c]. The basement depth in each case
was calculated after unloading the sedimentary sections using the back-stripping method of Sclater and
Christie [1980] and accounting for changes in sea level using the reconstruction of Haq et al. [1987]. This
method effectively isolates the component of the subsidence that is not caused by sediment loading and
compaction or by eustatic sea level change and which is thus interpreted as having a tectonic origin.

RG2001 Clift and Vannucchi: SUBDUCTION TECTONICS

5 of 31

RG2001



T
A
B
L
E
1
.
C
o
m
p
il
a
ti
o
n
o
f
th
e
G
eo
m
et
ri
c,

G
eo
lo
g
ic
,
a
n
d
T
ec
to
n
ic

In
fo
rm

a
ti
o
n
o
n
th
e
A
cc
re
ti
o
n
a
ry

P
la
te

M
a
rg
in
s
C
o
n
si
d
er
ed

in
T
h
is
S
tu
d
y
a

L
en
g
th
,
k
m

C
o
n
v
er
g
en
ce

R
at
e,

k
m

m
.y
.�

1

O
rt
h
o
g
o
n
al

C
o
n
v
er
g
en
ce

R
at
e,

k
m

m
.y
.�

1
A
g
e
o
f

M
ar
g
in
,b
M
a

F
o
re
ar
c
S
lo
p
e

A
n
g
le
,
d
eg

T
ap
er

A
n
g
le
,
d
eg

W
ed
g
e

W
id
th
,c
k
m

S
ed
im

en
t

T
h
ic
k
n
es
s,

k
m

S
ed
im

en
t

P
o
ro
si
ty
,
%

C
ru
st
al

T
h
ic
k
n
es
s,
k
m

S
o
u
th

C
h
il
e

2
0
0
0

2
0

2
0

1
5

2
.2

7
.6

4
5

3
.2

3
3

4
5

L
es
se
r
A
n
ti
ll
es

8
5
0

4
0

4
0

5
0

1
.7

6
.0

1
3
5

4
.5

2
4

3
8

O
re
g
o
n
-W

as
h
in
g
to
n

8
5
0

3
8

3
4

5
0

1
.8

5
.7

1
0
0

2
.2

3
7

4
5

B
ri
ti
sh

C
o
lu
m
b
ia

5
5
0

4
2

3
8

5
0

1
.8

5
.7

1
0
0

2
.5

3
6

4
5

A
le
u
ti
an
s

1
5
0
0

7
5

6
1

5
0

2
.7

9
.2

5
0

1
.5

4
1

2
7

A
la
sk
a

2
0
5
0

6
4

6
0

2
4

2
.1

7
.4

8
0

2
.5

3
6

4
5

T
ai
w
an
-n
o
rt
h
L
u
zo
n

7
0
0

3
0

3
0

6
2
.3

4
.7

6
0

4
.5

3
0

3
2

S
W

Ja
p
an
-N

an
k
ai

9
0
0

4
0

3
9

1
4
0

2
.0

9
.6

2
0
0

2
.3

2
7

4
0

S
u
m
at
ra

1
8
0
0

6
0

5
2

5
0

1
.4

5
.1

1
1
0

2
.5

3
6

4
5

Ja
v
a

2
1
0
0

7
7

7
6

5
0

2
.9

7
.9

1
0
0

1
.2

4
1

4
5

B
u
rm

a-
A
n
d
am

an
1
8
0
0

6
5

2
7

2
5

1
.0

3
.5

1
5
0

5
.0

2
8

4
0

M
ak
ra
n

1
0
0
0

3
8

3
8

9
0

1
.5

7
.5

2
0
0

6
.0

2
1

4
0

A
eg
ea
n

1
2
0
0

2
0

2
0

3
5

0
.5

3
.5

1
6
0

8
.0

1
8

3
5

S
ed
im

en
t

D
el
iv
er
y
R
at
e,

k
m

3
m
.y
.�

1

A
cc
re
ti
o
n

R
at
e,

k
m

3
m
.y
.�

1
A
cc
re
ti
o
n

E
ff
ic
ie
n
cy
,d
%

M
at
er
ia
l

S
u
b
d
u
ct
io
n
R
at
e,

k
m

3
m
.y
.�

1

M
ag
m
at
ic

P
ro
d
u
ct
io
n
,e

k
m

3
m
.y
.�

1

N
et

C
ru
st
al

G
ro
w
th

R
at
e,
f

k
m

3
m
.y
.�

1

A
g
e
o
f

O
ce
an
ic

P
la
te
,
M
a

K
ey

S
o
u
rc
es

S
o
u
th

C
h
il
e

4
3

7
1
6

3
6

2
7

3
4

2
4
–
3
6

C
a
n
d
e
et

a
l.
[1
9
8
7
],
B
eh
rm

a
n
n
a
n
d
K
o
p
f
[2
0
0
1
]

L
es
se
r
A
n
ti
ll
es

1
3
7

1
9

1
4

11
8

5
4

7
3

6
2
–
8
2

B
ro
w
n
a
n
d
W
es
tb
ro
o
k
[1
9
8
8
]

O
re
g
o
n
-W

as
h
in
g
to
n

4
8

1
0

2
1

3
8

4
7

5
7

4
–
8

F
is
h
er

et
a
l.
[1
9
9
9
],
G
er
d
o
m

et
a
l.
[2
0
0
0
]

B
ri
ti
sh

C
o
lu
m
b
ia

6
1

1
0

1
6

5
1

5
1

6
1

0
–
3

F
u
is
[1
9
9
8
],
H
yn
d
m
a
n
et

a
l.
[1
9
9
0
]

A
le
u
ti
an
s

5
4

4
7

5
4

8
3

8
7

6
0
–
6
5

R
ya
n
a
n
d
S
ch
o
ll
[1
9
9
3
],
V
a
ll
ie
r
et

a
l.
[1
9
9
4
]

A
la
sk
a

9
6

1
7

1
8

7
9

8
1

9
9

2
8
–
6
0

F
u
is
[1
9
9
8
],
P
la
fk
er

et
a
l.
[1
9
7
7
]

T
ai
w
an
-n
o
rt
h
L
u
zo
n

9
5

2
5

2
6

7
0

4
1

6
5

2
5
–
2
8

T
a
yl
o
r
a
n
d
H
a
ye
s
[1
9
8
0
],
K
a
ri
g
[1
9
8
3
]

S
W

Ja
p
an
-N

an
k
ai

6
5

2
4

3
7

4
1

5
3

7
7

2
0
–
2
5

M
o
o
re

et
a
l.
[2
0
0
1
]

S
u
m
at
ra

8
3

11
1
3

7
2

7
0

8
1

4
0
–
7
0

S
ch
lü
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America the common exposure of arc volcanic and plutonic

rocks along the coast (e.g., onshore from the DSDP drilling

transect in SW Mexico) between the modern arc and the

trench is clear evidence for the long-term landward retreat of

volcanism in that region. Similarly, the dredging of arc

volcanic rocks in western Pacific trenches [e.g., Bloomer

and Fisher, 1988] supports the hypothesis of major crustal

loss due to subduction erosion in those areas. In view of the

apparent misidentification of accretionary margins in the

past we believe that it is timely to reassess the importance of

accretion as a dominant process in active margin setting

worldwide.

5. ACCRETIONARY PLATE MARGINS

[13] Despite the apparent dominance of tectonic erosion

in areas formerly considered accretionary, there is no doubt

that subduction accretion is an important process at many

plate margins. Figure 3 shows the general distribution of

accretionary plate margins on a global scale. These tend to

be in areas of rapid sediment delivery from the continental

interior, often from large rivers draining mountainous con-

tinental sources. Rapid trench sedimentation is a feature

long associated with subduction accretion [von Huene and

Scholl, 1991]. In this study we have compiled a series of

transects across these accretionary margins in order to show

their geometry and overall structure, where that data exist

(Figure 4). When possible, the transects were chosen to be

close to DSDP and ODP well sites in order to provide

ground truthing and age control for seismic profiles. The

transects in Figure 4 are constructed to show the shape of

the accretionary prism in each case, together with the

associated continental crust and subducting plate. They do

not imply any specific tectonic setting, except net long-term

accretion. In Table 1 we show the basic geometric character-

istics of each accretionary complex, together with informa-

tion on the average thickness of sediment on the subducting

plate as it reaches the trench axis. Table 1 is meant to be a

dynamic compilation, which should be updated as better

geological and geophysical data become available. The

sediment thickness at the trench axis is the key variable,

rather than the thickness of the pelagic section, because it is

this total package that is either accreted or subducted when

overthrust by the forearc. The average trench bathymetric

slope was calculated over a distance of at least 50 km

perpendicular to the trench axis along with the total taper of

the accretionary complex based on the dip of slab derived

from seismic reflection profiles. In all cases this length scale

is entirely within the accretionary prism and is set at this

scale to eliminate unwanted noise from small-scale struc-

tures and to allow comparison with the erosive margins at

the same scale. Our scale of analysis is similar to that

chosen by Saffer and Bekins [2002] and allows comparison

of results between different studies. Moreover, because of

the long timescale of our analyses, looking at mass fluxes

over 10- to 15-m.y. time periods, we also argue that it is

appropriate to examine the forearc geometry on a long

length scale. The shape of the forearc slope closer to the

Figure 3. Map showing the distribution of accreting versus eroding subduction zones considered within
this study. Accretionary margins are shown with solid barbs on the plate boundary, while open barbs
mark erosive margins.
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Figure 4. Compilation of profiles across accretionary plate margins considered in this study. Profiles are
redrawn and resized to a common scale in order to allow direct comparison of different margins. Sources
for the original data are shown next to each profile.
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trench may be more susceptible to short-term changes in the

trench tectonics, while to alter the trench slope over dis-

tances >50 km requires tectonic processes operating con-

tinuously over long time periods.

[14] We compare the geometry and accretionary rate of

the forearc with the modern convergence rates calculated by

DeMets et al. [1990] for the point on the margin at which

the profile was taken. Specifically, we consider the trench-

perpendicular convergence rate, while recognizing that this

necessarily changes along strike in arcuate margins, such as

the Aleutians, or if the pole of rotation lies close to the

active margin. Naturally, when long stretches of active

margin are considered, there is significant variability, which

cannot be expressed in a single profile. For example, where

the sediment source is concentrated at one end of the

margin, e.g., in the Lesser Antilles, the Barbados accretion-

ary wedge is much wider (�300 km across) in the south,

where it is fed by the Orinoco River, compared to the

sediment-starved north (80 km across). In this case we

chose the best surveyed profile to represent this margin.

By showing the geometrical data with error bars, we attempt

to account for some of the along-strike variability, although

in margins with strong changes like the Lesser Antilles this

is not practical, while on very long poorly surveyed mar-

gins, such as Chile or Sumatra, the proposed relationships

between margin geometry and geodynamics can only be

considered to apply to the regions around the survey itself.

6. SUBDUCTING SEDIMENTARY SECTION

[15] The height of the trench sediment column was

recalculated as a volume of equivalent rock after accounting

for porosity. In examples where DSDP or ODP drilling

provided porosity measurements, then these values were

used to correct for porosity. Where no appropriate measure-

ments were available, the porosity-depth model of Sclater

and Christie [1980] was used, assuming that the trench

sediment represented an approximately even mixture be-

tween sand and shale (Figure 5). This compaction model has

been ground truthed in numerous drilled sedimentary sec-

tions from the North Sea and rarely shows deviations >5%

unless the section is greatly undercompacted. Figure 5 shows

the strong difference between the Sclater and Christie

[1980] model and the accreted sedimentary model of Bray

and Karig [1985]; however, in this case we are calculating

the volume of rock in the trench before overthrusting. von

Huene and Scholl [1991] showed the wide variability of

porosity-depth relationships in trench sediments, which

broadly coincide with the Sclater and Christie [1980]

model. Because the measurements from trench sediment

do not form a well-defined trend that differs significantly

from a normal sedimentary sequence, the Sclater and

Christie [1980] values are used in this study. However,

overpressuring, which can cause undercompaction, is as-

sociated with the deformation front at accretionary com-

plexes [e.g., Cochrane et al., 1996]. Screaton et al. [2002]

noted that the pelagic section under the trench sediments

may be overpressured immediately before overthrusting as

a result of the rapid deposition of trench turbidites. This

process is not thought to be a major source of error

because the thickness of the pelagic section is generally

moderate, usually <500 m, so that while the overpressur-

ing of this section is important to the accretion process, it

will not result in large errors in calculating the volume of

rock represented in the sedimentary section. Consequently,

the conversion of sediment volume to rock volume is not

considered to be a highly inaccurate procedure if the

lithologies are known.

[16] Uncertainties related to the conversion of seismic

sections to depth section are more likely to be a significant

source of error. Velocity measurements made on samples

recovered by scientific drilling can help define an appro-

priate velocity-depth model, while in most cases the con-

version is made based on the stacking velocities derived

during the processing of multichannel seismic reflection

profiles. In most of the examples we use the velocity-depth

conversion performed by the authors of the specific local

study. Errors in the velocity-depth conversion will cause

errors in the calculated taper of the accretionary wedge and,

in turn, with the volume of accreted sediment. Uncertainties

in the seismic velocities are likely no more than 20%

(a figure derived from observed lateral variability in seismic

velocities within individual stratigraphic units in a number

of margins worldwide). Furthermore, because the litholo-

gies involved are known and the compaction histories of

sediments do not vary so much, the velocity-depth conver-

sion should not vary by more than this value, affecting large

accretionary complexes more than smaller ones. In areas

Figure 5. Porosity depth plot for sand and shale from
Sclater and Christie [1980] compared to the accreted
sedimentary values of Bray and Karig [1985]. The effect of
overthrusting has a major impact on the dewatering
characteristics of the sedimentary column. Average values
between these two plots were used to calculate the average
porosity of the sediment entering the trench for each profile
analyzed.
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with little modern drilling or seismic data, appropriate

velocities are defined from other, analogous study areas

[e.g., Shipley et al., 1998; Gerdom et al., 2000].

[17] Once the overall taper of the accretionary complex

has been determined, an estimate can be made of the volume

of accreted sediment, given the length of the margin and the

width of the accretionary complex. The total accreted rock

volume can, in turn, be used to calculate a long-term,

average rate of material accretion if the age of the subduction

zone, or at least the age of active accretion, is known.

7. EROSIVE PLATE MARGINS

[18] A compilation of erosive margin forearcs was made

in a similar fashion to that described in section 3 for the

accretionary margins (Table 2). Again the profiles were

depth converted when possible and plotted on a common

scale (Figure 6). In order to estimate the global flux of

material through the subduction zones the rate of trench

retreat has to be estimated for margins where independent

studies have not yet constrained the rates of erosion. Eight

margin segments have been the subject of detailed local

studies that provide estimates of trench retreat rate. Rates

were assigned to the remaining margins based on similar-

ities in their geotectonic settings and geometries, as well as

proximity to well-constrained examples. Because the fore-

arc in these regions tends to be composed of crystalline or

volcanic crust the velocity-depth conversion from seismic

profiles is less complex than for heterogeneous sedimentary

accretionary complexes. The time-depth conversion was

typically done by the original studies from which we

compiled the data. Where the time-depth conversion was

not done by the source reference, we used recent velocity

models for erosive margins to constrain reasonable crustal

thicknesses [e.g., Suyehiro et al., 1996; Holbrook et al.,

1999; Ranero et al., 2000; Clift et al., 2003a].

[19] As noted in section 1, the collision of seamounts or

aseismic ridges with active margins is known to have a

strong erosive effect on their geometries [e.g., Ranero and

von Huene, 2000; Vannucchi et al., 2003], and where

possible, we chose to examine regions that were represen-

tative of the steady state condition of the entire margin

rather than only in the vicinity of an aseismic ridge

collision. Thus the profile from Tonga forearc is taken at

26�S, just south of the region now being indented and

steepened by the Louisville Ridge. The Lima Basin profile

is taken from a location where collision of the Nazca Ridge

started at 11 Ma, allowing time for equilibrium to be

restored after a period of accelerated erosion [Clift et al.,

2003a]. This approach allowed minimum estimates for the

mass removed to be calculated.

7.1. Crustal Thicknesses

[20] As in the case of the accretionary margins we

estimate the rate of long-term loss of crustal material from

the plate margin. This was achieved by using the long-term

rate of trench retreat and the average crustal thickness close

to the arc volcanic front. Because the overall geometry of a

margin must be assumed to have remained approximately

constant through long periods of geologic time, each

kilometer of trench retreat must require removal of material

equivalent to a 1-km-wide block of arc crust. The assump-

tion of constant forearc slope is clearly a false simplifica-

tion, yet in the absence of a transect of well-constrained drill

sites that could reconstruct the slope, this must be used as a

working model. While tectonic erosion is known to steepen

trench slopes [e.g., Dupont and Herzer, 1985; von Huene

and Lallemand, 1990], this steepening cannot continue

indefinitely for long periods of geologic time (>10 m.y.) if

the trench retreat rate is not very slow. As a result, trench

retreat over long periods of time can only be accommodated

by loss of the full crustal thickness on which the volcanic

arc is built. The crustal thickness under the forearc is often

hard to measure with seismic data because serpentinization

of the mantle wedge can eliminate or reduce the velocity

contrast between crustal and mantle material. Although it

can be argued that the subducting plate can only be

removing crustal (as opposed to mantle) material from the

overriding plate between the trench and the forearc Moho,

this distance is only well defined in a few well-surveyed

arcs. Moreover, if the forearc retains a fairly constant

geometry through time, then for each kilometer of landward

advance of the trench a matching kilometer of normal

thickness crust, on which the arc is built, must be lost.

There is no reason to suspect that thinner crust under forearc

regions compared to inland reflects original heterogeneity of

the overriding plate; it is, rather, a product of the subduction

process. As such, crustal thinning linked to tectonic erosion

must extend inland from those regions of the forearc closest

to the trench. For example, arc lower crust, which is known

to have a low viscosity [e.g., Kirby and Kronenberg, 1987;

Hopper and Buck, 1998], may flow toward the trench, so

that the zone of crustal loss would extend farther inland than

just under the outer forearc. As a result we opt to use the full

crustal thickness on which the arc is built to estimate crustal

losses by tectonic erosion. This method is applied whether

the arc is continental, built on a basement of continental

crust, or oceanic. While it has been argued that oceanic arcs

are built of older mid-ocean-ridge-type crust, drilling and

dredging evidence, in fact, points to these being located on

subducted related, albeit spread, crust dating from the

earliest phase of subduction [e.g., Stern and Bloomer,

1992]. As such this oceanic arc basement may be consid-

ered as part of the arc construct and does not have to be

subtracted from the total crust lost when calculating the

amount of arc crust lost by tectonic erosion.

[21] Determining the true crustal thickness is not always

possible because of a lack of accurate seismic refraction or

gravity data. Nonetheless, the crust under the Costa Rican,

Nicaraguan, and Guatemalan sections of the Central Amer-

ican Arc has been estimated at 35, 32, and 40 km,

respectively [Carr et al., 1990]. Farther south, wide-angle

seismic data from central Chile indicate average crustal

thicknesses of 45 km in that region [Beck et al., 1996; Bohm

et al., 2002]. Northern Honshu, being a mature continental

arc, also has significant crustal thickness of 40 km [Ito et
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al., 2000]. In contrast, Suyehiro et al. [1996] measured

crustal thicknesses of only 20 km under the central Izu Arc,

and Larter et al. [2001] estimated a crustal thickness of only

16–20 km under the Scotia (South Sandwich) Arc. A range

of 25–30 km thickness was recorded by Holbrook et al.

[1999] in the oceanic Aleutian Arc. Although the latter is an

accretionary margin, its magmatic crustal structure may be

typical of mature oceanic island arcs, despite the fact that

subduction erosion is likely removing crust from under the

forearc but landward of the accretionary complex [Ryan and

Scholl, 1993]. Unlike the western Pacific or Scotia Arcs, the

Aleutians have not experienced a recent arc rifting-back arc

Figure 6. Compilation of profiles across nonaccretionary and erosive plate margins considered in this
study. Profiles are redrawn and resized to a common scale in order to allow direct comparison of different
margins. Sources for the original data are shown next to each profile.
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basin formation event, which may be the reason that its

crust is slightly thicker than either the Scotia or Izu Arcs.

For the purpose of this study we define a mature oceanic

island arc as one that has experienced several million years

of magmatism along an arc volcanic front, following the

cessation of the boninitic submarine volcanism in a sea-

floor-spreading environment that characterizes the evolution

of oceanic arcs immediately following subduction initiation

[Crawford, 1989; Stern and Bloomer, 1992].

[22] Using these crustal thickness estimates as represen-

tative examples, we assigned crustal thicknesses to arcs with

no seismic refraction constraints. The crust underlying the

Peruvian and Colombian Arcs is considered to be most

similar to Chile in tectonic setting and is thus also assigned

a thickness of 45 km. The Kurile and Solomons Arcs have

estimated thicknesses of 25 km because, like the Aleutians,

they are unrifted oceanic arcs. The Ryukyu Arc is no older

than 15 Ma [Sibuet et al., 2002], and its submarine character

limits possible crustal thicknesses to �30 km, since crust of

normal density range that is thicker than�32 km and in local

isostatic equilibrium is elevated above sea level. Because the

Ryukyu Arc is young, we infer that much of the crustal

Figure 6. (continued)
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thickness under the modern active arc represents rifted

fragments of the preexisting East China Shelf. The southern

section of the Luzon Arc is also located on continental crust,

is slightly elevated above sea level, and is thus assigned a

thickness of 32 km. The Tonga and Kermadec Arcs have

both experienced recent and/or continuing active extension

and consequently are closer to Izu in crustal structure, a fact

confirmed by seismic refraction study of the central Tonga

Arc, i.e., 20-km-thick crust [Crawford et al., 1996].

7.2. Trench Retreat Rates

[23] Estimating trench retreat rates for the erosive margins

is potentially a major source of uncertainty because only a

moderate number of margins have been studied in detail, and

even in these examples, there are significant uncertainties.

Typically, trench retreat rates are estimated by the recogni-

tion in the trench slope of rocks that must have formed much

farther landward, e.g., in shallow water, so that their modern

deep-water location must be caused by tectonic erosion. The

long-term rate of trench retreat is then calculated from the

age of the rock and the horizontal distance that the location

must have advanced toward the trench since its eruption or

sedimentation in order to account for the change in paleo-

bathymetry. In the best examples this trenchward advance of

a fixed point on the overriding plate can be charted in detail

provided the age and paleobathymetric resolution is good

(e.g., Figure 2). In several cases, only a long-term average

rate can be derived. Nonetheless, because the rate of sub-

duction accretion was averaged over long time periods

(>15 m.y.), it is appropriate to use long-term average rates

of tectonic erosion if the two are to be directly compared. In

practice, this is the only practical approach because of the

age of the forearc stratigraphic record that constrains the

rate of trench retreat. Trench retreat was estimated at only

0.9 km m.y.�1 in Guatemala, based on the modern slope

geometry and the rates of subsidence since the Oligocene

(25 Ma [Vannucchi et al., 2004]). As discussed in section 2,

in Mexico long-term trench retreat rates appear to be even

slower at 1 km m.y.�1, despite having accelerated since 8 Ma

[Mercier de Lepinay et al., 1997]. Farther south, Vannucchi

et al. [2001] estimated long-term rates of trench retreat at

3 km m.y.�1 in Costa Rica. Here we estimate a trench retreat

rate of 2 km m.y.�1 for Nicaragua, since this is intermediate

between Costa Rica and Guatemala in geometry and in

convergence rate. Two studies of Peru [von Huene and

Lallemand, 1990; Clift et al., 2003a] now bracket trench

retreat in that area at 1.7–3.5 km m.y.�1. We use the

average rate since the Eocene of 3.1 km m.y.�1 to estimate

rates of crustal subduction, a value that lies close to the

value of 3.0 km m.y.�1 in northern Chile calculated by

Laursen et al. [2002]. We further assign trench retreat rates

of 3.0 km m.y.�1 to the Colombia/Ecuador margin by

Figure 7. Diagrams showing the relationship between plate convergence rates and the shape of the
forearc convergence rate versus (a) topographic slope and (b) forearc taper, both over wavelengths
>50 km. Large symbols show margins for which the taper has been quantified by deep penetrating
seismic data, while the smaller symbols show margins for which a taper is inferred from slope
and shallow seismic data. Abbreviations are as follows: ALE, Aleutians; ALK, Alaska; AND,
Andaman; BC, British Columbia; COS, Costa Rica; ECU, Ecuador; GUA, Guatemala; HON, Honshu;
JAV, Java; KAM, Kamchatka; KER, Kermadec; KUR, Kurile; LA, Lesser Antilles; MAN, Manila;
MAK, Makran; MAR, Marianas; MED, Mediterranean; MEX, Mexico; NAN, Nankai; NC, northern
Chile; NIC, Nicaragua; PER, Peru; PHI, Philippines; RYU, Ryukyu; SC, southern Chile; SOL, Solomons;
SS, South Sandwich; SUM, Sumatra; TAI, Taiwan; TON, Tonga; and WAS, Washington-Oregon.
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comparison with Peru, Chile, and Costa Rica. In the western

Pacific, von Huene and Lallemand [1990] calculated the

Honshu Trench to be retreating at 3.0 km m.y.�1. We assign

the Kurile, Ryukyu, and Manila Trenches a retreat rate of

3.0 km m.y.�1 to match that measured in northern Japan,

because these arcs have similar tectonic settings and

convergence rates to that well-documented margin.

[24] The highest long-term trench retreat rates were

recorded in the oceanic arcs, with 3.8 km m.y.�1 in Tonga

[Clift and MacLeod, 1999] and 4.7 km m.y.�1 in South

Sandwich [Vanneste and Larter, 2002]. Similarly, the Solo-

mon Arc is assigned a rate of 3.8 km m.y.�1 to match its

nearby neighbor, Tonga, given the similar convergence rates

in each arc. The Kermadec Arc is assigned a lower value of

3.0 kmm.y.�1 in recognition that it has yet to collide with the

highly erosive Louisville Ridge and because the conver-

gence rate is lower on this part of the margin than it is in

Tonga. Tectonic erosion rates in the Izu-Bonin-Mariana Arc

are likely lower than that seen in the Tonga region. We infer

lower rates for the Marianas because the presence of ser-

pentinite mud volcanoes in the Marianas forearc requires the

hydration of the mantle underlying the forearc crust [Fryer et

al., 1985]. Rapid tectonic erosion of the underside of the

Tonga forearc may be the reason that such features do not

form in that area, because the mantle close to the trench is

removed too quickly to be altered to serpentinite. Paleowater

depth constraints from the Izu-Bonin-Mariana forearc

[Hussong et al., 1982; Fryer et al., 1990; Taylor et al.,

1992] indicate water depths >2000 m since the Eocene in all

drilled locations. At DSDP Sites 458 and 459 in the Mariana

forearc the basement is composed of submarine pillow lavas

[Natland, 1982]. Similarly, the forearc volcanic rocks at

ODP Site 786 are pillow lavas and breccias, whose volatile

contents indicate submarine eruption, similar to their modern

depths [Newman and van der Laan, 1992]. Although

Lagabrielle et al. [1992] argue for shallower, even subaerial

water depths in the Eocene, this is based on the occurrence

of explosive volcanic products indicating eruption above

500-m water depth (pressure compensation level). These

volcaniclastic materials may have been reworked into deeper

water and may not indicate the water depth at the site of

sedimentation. Furthermore, the recognition that volatile-

rich eruptions may occur in much deeper water (>1.8 km

[Gill et al., 1990]) suggests that Eocene eruption in the Izu

forearc could have been in deep water even if the eruption

was explosive. Indeed, the benthic foraminifer assemblages

in the sediments at ODP Site 786 are in accord with those

from the Marianas in showing deepening from 1.3 to 2.1 km

in the Eocene to 3 km in the present day [Kaiho, 1992]. This

observation is consistent with a slow long-term rate of basal

erosion and trench retreat. We assign an arbitrary low trench

retreat rate of 1 km m.y.�1 for the Mariana section of this

margin and 2 km m.y.�1 for Izu-Bonin, since that part of the

margin has a steeper trench slope and an absence of

serpentinite mud volcanoes, suggesting slightly faster rates,

perhaps intermediate to the 3 kmm.y.�1 measured in Honshu

just to the north [von Huene and Lallemand, 1990].

8. CONTROLS ON FOREARC GEOMETRIES

[25] Using the data compiled from each subduction zone

and presented in Table 1, it is now possible to investigate

how certain characters of the subduction setting relate to

one another. Figures 7a and 7b show plots of convergence

rate compared to forearc slope angle and to the overall taper

Figure 8. Diagram showing the inverse relationship between the thickness of sediment at the trench on
the subducting plate and (a) the long wavelength slope of the forearc and (b) the taper of the forearc
wedge.

RG2001 Clift and Vannucchi: SUBDUCTION TECTONICS

15 of 31

RG2001



of the forearc, respectively. In both cases, there is a positive

correlation between slope or taper angle and the conver-

gence rate for accretionary margins, with a less well defined

relationship in the erosive margins. It is, however, clear that

erosive plate margins do not form forearc wedges with

bathymetric slopes less than 3�, slope gradients that are

typical in accretionary settings. In addition, erosive plate

margins do not appear to form in regions where the

orthogonal convergence rate is <6.3 cm yr�1, while accre-

tionary margins do not form in regions where the orthogonal

convergence rate exceeds 7.6 cm yr�1. The Philippine

Trench is the exception to this rule in being apparently

erosive but with a slow orthogonal convergence rate be-

cause of the strongly oblique character of the subduction.

Relation motion of �95 mm yr�1 along the Philippine

Trench is very fast and appears to discourage accretion.

The relationship between forearc taper and convergence rate

is not quite as well defined as is that with the slope angle,

but the same general positive trend is still visible, with some

overlap between the accretionary and erosive margins.

[26] The relationship between accretionary wedge geom-

etry and convergence rate suggests a basic first-order

control on the forearc imposed by the subducting plate.

Wedge models for accretionary margins [e.g., Davis et al.,

Figure 9. Diagrams exploring the relationship between the rate and efficiency of sediment off scraping
in accretionary plate margins. Long-term rate of sediment accretion appears to be related to both (a) the
thickness of sediment on the subducting plate and (b) the net rate of sediment delivery to the trench. The
proportion of the subducting sediment column accreted shows a little correlation with (c) the orthogonal
convergence rate or (d) the thickness of the trench sediment.
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1983; Platt, 1986; Gutscher et al., 1996] predict that the

steepness of an accretionary wedge should be a function of

the friction along the base of the wedge, the coefficient of

internal friction of the material forming the wedge, and the

internal rheology of the wedge. Although the Mediterranean

Ridge is unusual in having a very low wedge slope, likely

linked to the very low basal friction imposed by Messinian

salt on which the major detachments focus [e.g., Chaumillon

andMascle, 1997; Kopf, 1999], this situation is an exception,

and there is an overall tendency of the accretionarymargins to

correlate in the way that is observed.

[27] Saffer and Bekins [2002] proposed that the pore fluid

pressure at the base of the wedge controls the taper of the

forearc wedge, because this was a dominant control on the

basal friction. These authors suggested that muddy imper-

meable accretionary complexes can maintain lower wedge

tapers, especially when convergence rate is high, because the

fluids released from the subducting sediments cannot escape

to the seafloor. This study was based on four relatively slow

convergent margins (including one, Mexico, that we reinter-

pret as being erosive). This compares with the 13 accretion-

ary margins considered here. Our results show that over the

full range of convergence rates the taper of the wedge is

positively, not negatively, correlated with the convergence

rate. This may imply that, contrary to the findings of Saffer

and Bekins [2002], it is convergence rate that seems to

dominate over lithology and to affect fluid regime as a control

of forearc wedge taper.

[28] It is noteworthy that the fastest (and steepest) accre-

tionary convergent margins are often adjacent to mountain-

ous continental interiors that can deliver large volumes of

coarse sandy sediment to the trench axis (e.g., Alaskan,

Aleutian, Chilean, and Java margins). In comparison, the

slower converging (and less steep) Makran, Aegean, and

southern Lesser Antilles systems do not have mountainous

hinterlands, and thus they have muddier, thicker trench

sediments. If this trend of faster convergence with fast

eroding mountains producing coarse trench sediments and

steep wedge tapers were universal, then the lithological

mechanism of wedge taper control proposed by Saffer and

Bekins [2002] could be consistent with the convergence rate

control shown here. However, fast convergence does not

always generate high topography, and conversely, some slow

accretionary margins lie adjacent to very high topography,

e.g., the Andaman Arc and Taiwan; consequently, we favor

convergence rate over lithology as being the dominant

control to wedge taper.

[29] We do, however, support the hypothesis of Saffer

and Bekins [2002] that fluid flux can be a key control of

forearc geometries in accretionary margin settings. Figure 8

shows that the slope and taper of the forearc wedge in

accretionary margins are inversely related to the thickness

of sediment on the subducting plate at the trench axis.

Because sediment is a much greater reservoir of fluid than

igneous basement, at least in the shallower levels of any

given subduction zone, margins with thick sediment cover,

releasing more fluid into the wedge during the early stages

of subduction, might be anticipated to have the shallower

slopes and narrower tapers. Clearly, this relationship does

not apply to the slope of erosive forearcs.

[30] The volcanic, plutonic, and mantle rocks that make

up the forearc basement in erosive settings appear to have

more strength than the accretionary wedge sedimentary

rocks, allowing them to maintain a steeper trench slope that

is not dependent on the dewatering characteristics of the

subducting plate. Figure 7a shows that there is a weakly

defined relationship between the speed of convergence and

the erosive forearc slope (discounting the highly oblique

Philippine Trench). The very fastest trench systems in Tonga

and the Solomons are also seen to have the steepest slopes.

Steep trench slopes may be caused by greater friction along

the base of the forearc wedge. None of the erosive margins

have significant sediment thicknesses on the subducting

plate, so dewatering of these deposits is not considered to

be a crucial control for these margins. Instead, the dominant

control on basal friction and wedge geometry appears to be

convergence rate itself, coupled with the greater strength of

erosive forearc crust. This relative strength of the erosive

forearc crust may be related to the common igneous, rather

than sedimentary, lithologies encountered in these settings.

In addition, away from the outer trench slope the igneous

crust of an erosive forearc should be faulted in a more

discontinuous style and thus retain greater strength between

faults than the penetratively deformed sedimentary rocks of

an accretionary wedge [e.g., Cowan, 1982; Ogawa, 1985;

Taira et al., 1992; McCall, 2002].

9. CONTROLS OF RATES OF ACCRETION

[31] The physical controls on the process of sediment

accretion were explored through comparison of the rates of

accretion with the nature of the subducting plate and its

Figure 10. Plot of sediment thickness at the trench related
to the velocity of the plate convergence.
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sedimentary cover. Figure 9a shows the long-recognized

correlation between the thickness of sediment (uncorrected

for porosity) on the subducting plate at the trench axis and

the rate of accretion in the forearc [e.g., von Huene and

Scholl, 1991]. When the volume of rock equivalent is

calculated for the incoming sedimentary section by remov-

ing the sediment porosity from the volume of sediment

reaching the trench, there is still a broad correlation between

the rate at which sedimentary rock mass is delivered to the

trench axis and the long-term rate of accretion (Figure 9b).

Because the thickness is strongly linked to the rock volume,

this agreement is no surprise. Thicker sections of sediment

on more slowly subducting plates are more readily accreted

than thinner sections of sediment on faster subducting

plates. Indeed, Figure 9c shows that the efficiency with

which sediment is stripped from the subducting plate and

incorporated into the forearc wedge is roughly inversely

related to the rate of convergence, i.e., faster rates of

convergence result in lower proportions of the sediment

reaching the trench being accreted into the forearc wedge.

Java appears to be an exception to the general trend in being

more efficient than would be expected for its convergence

Figure 11. Diagrams showing the interrelationships between the rate of forearc erosion and a variety of
tectonic criteria that were significant in controlling the rate of sediment off scraping in accretionary
margin settings. In the case of erosive plate margins, no such simple control is recognized. Large circles
show margins for which the rate of tectonic erosion has been quantified, while the small circles show
margins for which a tectonic erosion rate is inferred by comparison.
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rate. There appears to be no clear relationship between the

thickness of the trench sediment column and the proportion

of that column that is eventually incorporated into the

forearc wedge (Figure 9d).

[32] The link between the efficiency of sediment accre-

tion and the convergence rate is largely a function of the

fact that the thin trench sediment thicknesses correlate

with fast rates of convergence (Figure 10). Because rates

of clastic sedimentation in the trench are typically much

higher than those in the open ocean pelagic setting, the

duration which any given vertical section of an oceanic

plate spends in the fast deposition zone within the trench

axis largely determines the thickness of the sediment pile

that is eventually underthrust or accreted, provided there

is a flux of sediment from an adjacent continental

landmass. At one extreme, great sediment thicknesses

are associated with slow convergence where a passive

continental margin comes into collision with a trench,

resulting in orogeny and the cessation of convergence

(e.g., Taiwan and Aegean). The correlation between or-

thogonal convergence rate and trench sediment thickness

makes it difficult to assess which of these two factors may

be controlling the geometry of the accretionary forearcs.

Are narrow wedge tapers driven by the dewatering of

thick sediment sections or by the slow convergence rate?

The rough positive link between convergence rate and

forearc slope in erosive plate margins suggests that

convergence rate may be the dominant control, determin-

ing both sediment thickness and basal friction and, in

turn, wedge geometry.

[33] Whether the trench sediment is accreted or sub-

ducted below the forearc has often been considered to be

controlled by lithology. Because of the porosity and

strength difference between the fine-grained, muddier

pelagic and hemipelagic sediments at the base of the

incoming sediment column and the sandier sediments of

the trench at the top, it has been suggested that an

accretionary prism décollement will preferentially form

close to the transition between these sediment types

[e.g., Moore, 1989; Le Pichon et al., 1993]. Our correla-

tion between accretion efficiency and the convergence rate

makes sense in this context, because the convergence rate

will largely determine the thickness of the trench clastic

section deposited, which, in turn, is sandier and may be

accreted to the forearc. Clearly, sediment supply is also

important in allowing a thick trench sequence to be

deposited [Helwig and Hall, 1974], yet the correlation

in Figure 10 seems to suggest that either orthogonal

convergence rate is dominant or is itself linked to sedi-

ment supply. At one extreme the fast, oceanic convergent

margins of the western Pacific (e.g., Tonga, Marianas,

Mindanao, and Ryukyu) have little or no trench sediment

because of the short time available to deposit the trench

section and because they have no continental interior from

which to derive clastic sediment. These margins show

little or no efficiency in off scraping the sedimentary

cover to the subducting plate. At the other extreme, more

slowly convergent or collisional margins with mountain-

ous continental drainage basins have large trench sediment

thicknesses, which are relatively efficiently harvested by

the accretionary wedge (e.g., Cascadia, Makran, and

Taiwan).

[34] As noted above, accretion appears to be an effective

process when convergent rates are <76 mm yr�1 and where

the sedimentary cover is >1 km thick. Since the rate of

convergence itself is controlled by the density and thus

thermal age of the subducting slab, the tendency to accrete

or erode is partially controlled by the age of subducting

oceanic lithosphere. However, the rate of convergence is

controlled by the gravitational pull of the entire subducting

slab not just a short stretch adjacent to a given margin.

Convergence rates may also be disrupted by continental

collision events. Consequently, we conclude that there is no

simple relationship between the age of the plate, the rate of

convergence, and the efficiency of the accretion process.

10. CONTROLS OF RATES OF EROSION

[35] Determining what is controlling the long-term rates

of crustal loss in erosional plate settings is not possible

from this current study, although it is apparent what are

not key controls. Figure 11 shows that the long-term rate

of crustal loss from the forearc is not closely correlated to

convergence rates, sediment thickness on the subducting

plate, the rate of sediment delivery to the trench, or the

maximum age of the subducting plate. Apart from noting

that slow converging margins with thick sedimentary

sections on the subducting plate always develop accretion-

ary complexes and are sites of net forearc growth over

long timescales, no clear pattern emerges. We suggest that

the reason for this is that the rate of plate erosion is

controlled largely by the roughness of the subducting

plate. In particular, the collision of large aseismic ridges

with convergent margins appears to dominate the erosive

history in the best documented examples (e.g., Tonga,

southern Chile, Mindanao, Peru, and Costa Rica [Dupont

and Herzer, 1985; Cande and Leslie, 1986; Ballance et

al., 1989; von Huene et al., 1996; Pubellier et al., 1999;

Behrmann and Kopf, 2001; Laursen et al., 2002; Clift et

al., 2003a; Vannucchi et al., 2003]). Although the collision

events themselves can be very short-lived events at a

single point on the margin, the erosional impact of such

events is profound on the net long-term subsidence and

erosion history of that margin. Ballance et al. [1989] in

particular showed that ridge collision caused the Tonga

forearc to be significantly shortened and tilted toward the

trench relative to uncollided forearc within the Kermadec

region. This was interpreted to reflect the influence of the

Louisville Ridge in removing material from under the

forearc, especially close to the trench.

[36] The erosive effect of subducting normal oceanic crust

over long periods of geologic time appears to be quite

moderate. It is noteworthy that even in margins where the

subducting oceanic plate has thin sediment cover at the

trench axis and experiences large normal faulting due to
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flexure (indicating that the roughness of the basement might

be high), the long-term trench retreat rate is modest, e.g.,

�1.5 km m.y.�1 since 35 Ma in Tonga [Clift and MacLeod,

1999] and 1 km m.y.�1 in northern Chile [von Huene et

al., 1999]. In contrast, the Tonga margin loses �50 km from

its forearc during its short-lived (�1 m.y.) collision with the

Louisville Ridge, more than doubling the long-term erosion

rate. Trench retreat rates increase eightfold in Peru after the

�4-m.y.-long collision of the Nazca Ridge with that margin

at 11 Ma [Clift et al., 2003a]. In Chile, collision of the Juan

Fernandez Ridge has increased retreat rates to 3 km m.y.�1

since 10 Ma [Laursen et al., 2002], though in this case the

orthogonal collision has resulted in the ridge eroding only a

short stretch of margin, though over a relatively long period

of time. Similarly, we suggest that the trench retreat rate in

Costa Rica is much faster (3 km m.y.�1) than the rate

deduced from the subsidence history in Guatemala and

Mexico (�1.0 km m.y.�1) because the orthogonal, long-

lived subduction of Cocos Ridge is boosting the tectonic

erosion in Costa Rica, especially under the Osa Peninsula

but also along its flanks to the north and south.

[37] We wish to emphasize that while ridge collision

boosts erosion rates, this process is ongoing in noncolli-

sional subduction settings, such as Mexico and Guatemala,

where forearc subsidence and thus crustal loss are docu-

mented. The Marianas represents a sediment-starved margin

in which oceanic crust even older than that in Tonga is

being subducted and which might also have a rough,

potentially erosive basement. This part of the Pacific Plate

is also ornamented with numerous atolls and guyots, yet in

this area the trench retreat rate is inferred to be somewhat

less than that seen in Tonga, at least in the recent geological

past (see discussion section 7.2). The general similarities

between the Mariana, Izu, and Tonga Arcs in terms of their

ages and dimensions suggest that they likely experienced

similar constructional histories and that the present less

erosive nature of the Mariana forearc is not typical of the

long-term history since the Eocene start of subduction.

These observations argue against the ability of even rough,

normal oceanic basement to erode forearc crust at a fast rate

(i.e., �3 km m.y.�1) during steady state subduction. We

conclude that it is the collision of major oceanic ridges that

is the most effective mechanism for loss of crust from

margins that are otherwise in states of equilibrium or

moderate trench retreat. We also recognize the importance

of slow, continuous tectonic erosion as an efficient mech-

anism for removing forearc basement.

11. RATES OF MATERIAL SUBDUCTION TO THE
MANTLE

[38] Using the mass budgets constructed for each of the

margins, it is now possible to estimate the rate of mass flux

through each margin and specifically to estimate how much

crustal material is lost to the mantle or volcanic roots of

magmatic arc and how much is added to the forearc wedge.

In the case of erosive margins the entire sediment package on

the underthrusting plate is subducted to depth below the

forearc along with any crust removed from the plate margin.

In the case of accretionary margins the net rate of deep

sediment subduction is represented by the difference be-

Figure 12. Diagrams showing the relationship between the rate of material subducted below the forearc
in both accretionary and erosive plate margins versus (a) the convergence rate and (b) the rate of sediment
delivery at the trench from the subducting plate. Large circles show erosive plate margins for which a
trench retreat is well defined, compared to the small circles representing margins for which tectonic
erosion rates are inferred.
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tween the rate of sediment delivery and the rate of growth of

the accretionary prism. As before, these budgets necessarily

average rates over tens of millions of years. Figure 12a

shows that there is no correlation between the orthogonal

plate convergence rate and the rate of rock subducted below

the forearc wedge for all margins. It is noteworthy that the

rate of material subduction is not systematically higher in the

erosive margins than it is in the accretionary margins. This

reflects the inefficiency of the accretionary process and the

tectonic erosion that accompanies accretion in some settings

(e.g., Aleutians [Scholl et al., 1987]). However, clearer

separation between the two styles of margin is apparent in

Figure 12b where the rate of material subducted below the

forearc is plotted against the rate of sediment delivered to the

trench. The separation reflects the fact that in the accretion-

ary margins the rate of material subduction is the same as the

rate of sediment subduction, which is linked to the total

amount of material delivered to the trench. In contrast, in the

erosive margins it is the rate of trench retreat, i.e., erosion of

the forearc basement, that dominates the mass subduction

budget. We calculate that in the erosive margins only 12–

48% (median 22%) of the total material subducted below the

forearc is derived from the sediments in the subducting plate,

compared to 100% in the accretionary margins.

[39] An important result of our calculation is that sub-

duction accretion is a relatively inefficient process for

cleaning sediment off the oceanic basement on which it

was deposited. Only 7–37% of the sediment reaching the

trenches appears to be added to the accretionary complexes,

with the bulk subducted to depth. While the efficiency of

the accretionary process does not appear to be linked to the

rate of plate convergence and the thickness of the trench

sediments, it may be more strongly linked to lithology,

being favored in regions of sandy trench sediment. Globally,

the median proportion of the rock delivered as sediment to

the trench that is accreted from the subducting plate is only

17%, with the remainder being subducted at least �50 km

below the forearc wedge.

12. FATE OF SUBDUCTED CRUSTAL MATERIAL

[40] Whether the subducted sediment and arc basement is

returned to the upper mantle or merely reworked through

the magmatic roots of the adjacent arc is a key question that

has important implications for the fate and origin of the

continental crust. Geochemical evidence tells us that sedi-

ment involvement in arc petrogenesis is nearly ubiquitous,

but whether all the sediment is recycled or subducted is a

more difficult question. The answer to this question hinges

on the magmatic productivity rates in the arcs. In a global

compilation of arc crustal volume, Reymer and Schubert

[1984] estimated that 20–40 km3 of new melt were added

every one million years per kilometer of active margin,

compared to a global average rate of crustal loss of 90 km3

m.y.�1 km�1 calculated in this study. At this rate a volume

of crust equivalent to the entire modern total volume

(�8.0 � 109 km3) could be fluxed through the planet’s

active margins in a little more than 2.2 b.y. Even assuming

the highest rate of crust growth estimated by Reymer and

Schubert [1984], this would predict a steady decline in the

volume of the continental crust. However, Schubert and

Figure 13. Diagrams showing the relationship of (a) orthogonal convergence rates and (b) trench
sediment thicknesses to the net crustal growth or loss along the global active margins, using the
uniform magmatic accretion rate of 90 km3 m.y.�1 km�1 of margin, required to conserve modern
crustal volumes.
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Reymer [1985] argued that because of the generally constant

degree of continental freeboard above mean sea level during

the Phanerozoic (<630 Ma), the continental crust must, in

fact, be growing slowly during that time period, a model

supported by Nd isotopic evidence for continental evolution

[Jacobsen, 1988]. Schubert and Reymer [1985] inferred that

because of decreasing total global heat flow from the mantle

the ocean basins will tend to deepen with time, lowering sea

level unless the continental crust grows at a rate sufficient to

keep pace with the larger volumes of the ocean basins, i.e.,

0.9 km3 yr�1. In order to achieve this rate of growth in the

context of the revised subduction erosion rates we calculate

that the average magmatic productivity of the global vol-

canic arcs must be �91 km3 m.y.�1 km�1 of margin. A

productivity of 90 km3 m.y.�1 km�1 is required just to

maintain the current crustal volume.

[41] These average rates of magmatic productivity may be

compared to recent estimates for productivity based on

seismic refraction work. Holbrook et al. [1999] estimated

long-termmagmatic growth rates of 55–82 km3m.y.�1 km�1

of margin for the Aleutians, while Suyehiro et al. [1996]

indicated long-term average accretion rates of 66 km3 m.y.�1

km�1 of margin in the Izu Arc. Both these estimates do not

account for the gradual loss of crust by subduction erosion,

meaning that the true estimates of magmatic output for these

arcs would be higher. Average magmatic productivity would

be�106 km3 m.y.�1 km�1 of Izu-Bonin margin if our trench

retreat estimate of 2 km m.y.�1 is correct. Although we

consider the Aleutians to be accretionary in this study on

the basis of an accretionary prism on the trench slope, the

development of a prominent perched forearc basin [Scholl et

al., 1987] indicates subsidence and possible tectonic erosion

closer to the arc, suggesting that the rate of Holbrook et al.

[1999] must also be considered a minimum. These estimates

are consistent with our proposed rates. In contrast, for the

Peruvian margin, Atherton and Petford [1996] estimated

only 8.0 km3m.y.�1 km�1 of margin, a figure that if true must

be substantially below global averages. In practice, however,

determining rates of magmatic accretion in the mid and lower

crust of continental arcs is very difficult, even with good

seismic refraction data.

[42] The magmatic productivity rate inferred from the

slow growth model (i.e., 91 km3 m.y.�1 km�1 of margin) is

by definition insufficient to account for the present volume

of the continental crust if extrapolated over the entire history

of the Earth, as it was determined to maintain not to build

the present crust. Magmatic productivity rates would have

to reach an average of >135 km3 m.y.�1 km�1 of margin in

order to account for the present crustal volume within the

known age of the Earth, assuming modern subduction

erosion rates. Because these values appear to be somewhat

higher than justified by existing seismic refraction work, we

conclude that the crust must have experienced an earlier

phase of more rapid growth. This result is consistent with

isotopic evidence for fast crustal accretion during the

Achaean and Early Proterozoic, with growth slowing into

the Phanerozoic and more recycling of existing continental

material [Armstrong, 1971, 1981; Allègre and Rousseau,

1984; Taylor and McLennan, 1985; Goldstein et al., 1997;

Elliott et al., 1999].

13. ARC MAGMATIC PRODUCTIVITY

[43] Figure 13 graphically demonstrates the difference

between the two types of active margin. As might be

expected, the accretionary margins all show net growth of

the crust in these locations, while many, but not all of the

erosive margins, show net loss of material if the average

rate of magmatic production assuming no modern conti-

nental growth (90 km3 m.y.�1 km�1 of margin) is assumed

for all arcs. We note that while sediment accretion does

allow a single margin to grow, this material is not new

continental crust but is merely reworked crust, redistrib-

uted to a new location. Our mass budgets predict that the

Guatemalan, Mexican, Nicaraguan, Kermadec, Kurile,

southern Luzon, Tonga, and Izu-Bonin-Mariana Arcs

would be sites of active crustal growth, with other erosive

margins in a state of net crustal decline. If this is true, then

this begs the question as to when the bulk of the present

Costa Rican, South Sandwich, or Solomon Arc volumes

were generated if not in the present arc setting. In the case

of Tonga and Izu-Bonin-Mariana Arcs, there appears to

have been an earlier voluminous phase of magmatism

shortly after the start of subduction [e.g., Bloomer et al.,

1995]. If this is a common feature to arcs, then this

process could conceivably generate a large arc massif that

may decline because of the long-term tectonic erosion.

There is, however, no geologic evidence that oceanic arc

crust grows and shrinks in this fashion. Moreover, the

presence of abandoned remnant arc ridges formed after

rifting in the Scotia, Tonga, and Izu-Bonin-Mariana back

arcs shows that net construction of arc crust continued

after the initial subduction volcanism. The geology of

these arc systems suggests that they had similar construc-

tional histories since subduction initiation, which is at odds

with the predictions shown in Figure 13.

[44] We infer that arc magmatic productivity must vary

significantly between arcs, with greater melt production in

the oceanic arc systems and less under the continental arcs.

This conclusion is consistent with arc petrogenetic models

such as that of Plank and Langmuir [1988] in which the

thicker crustal lid over the decompressing and melting

mantle wedge in continental arcs inhibits upwelling and

results in less melt production than in the oceanic arcs,

whose thinner lids permit higher melt fractions.

[45] Here we approximate the degree of melting in each

arc in order to generate more realistic mass balances for

each margin. Figure 14 shows the results of the melt

redistribution assuming that the degree of partial melting

in a single arc is controlled largely by the height of the

melting column [Plank and Langmuir, 1988]. In making

this calculation we assume that the bulk of the fluids are lost

from the subducting plate 100 km below the arc volcanic

front, so that the height of the melting column is calculated

as being 100 km, the crustal thickness. However, this model
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yielded geologically unrealistic estimates, such as excess

melting in the Aegean, Taiwan, Makran, and Nankai Arcs

(Figure 14a), and not enough melting in Tonga, Solomons,

and Kermadec Arcs (Figure 14b). Consequently, we chose

to estimate global distribution of melting by scaling this in

proportion to the rate of convergence. Petrogenetic models

such as that of Tatsumi et al. [1983] indicate that the degree

of melting in an arc is largely a function of the amount of

water added to the mantle wedge, which, in turn, is

governed by the rate at which hydrated oceanic crust is

Figure 15. (a) Plot showing the calculated rate of melt
production at each accretionary convergent margin based
on the rate of convergence together with the rate of rock
accretion in the forearc accretionary wedge to give the net
rate of crustal growth in these settings. (b) Plot showing
the calculated rate of melt production at each erosive
convergent margin based on the rate of convergence
compared to the rate of tectonic erosion of the forearc
basement.

Figure 14. (a) Plot showing the calculated rate of melt
production at each accretionary convergent margin based on
the height of the melting column [Plank and Langmuir,
1988] together with the rate of rock accretion in the forearc
accretionary wedge to give the net rate of crustal growth in
these settings. (b) Plot showing the calculated rate of melt
production at each erosive convergent margin based on the
height of the melting column compared to the rate of
tectonic erosion of the forearc basement.
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delivered to the trench. In making this estimate we recog-

nize that the degree of melting can vary by large amounts

through time with changes in the volumes of fluid released

from the subducting plate during short-lived periods of slab

roll back and arc rifting [e.g., Clift et al., 2001]. As a result

we estimate average magmatic productivity rates over long

time spans (>10 m.y.). Because our accretionary and erosive

mass budgets are also averaged over tens of millions of

years, this approximation in the degree of melting is

reasonable because the variations induced by tectonic

events tend to last for <2–4 m.y.

[46] In redistributing the global melt production to the

arcs on the basis of the convergence rates we assume that

the degree of melting under any arc is related in a linear

fashion to the modern convergence rate of DeMets et al.

[1990]. Figure 15a shows the net crustal growth budget for

the accretionary plate margins broken down into the relative

contributions from magmatism and from subduction accre-

tion. The contrast with the melt column-derived budget is

large (see Figure 14a). The dominance of magmatism as the

engine for crustal growth in these margins is apparent,

accounting for 55–95% of the total growth rate. The

Aegean, Andaman, Makran, and Taiwan Arcs show the

lowest proportions of magmatic crustal growth, which is

appropriate given the geology of these regions, their high

rates of sediment accretion, and their modest or nonexis-

tence volcanic output. Our calculations support models that

favor convergence rates and not melting column height as

the dominant control on arc petrogenesis. Unfortunately,

because of the small number of robust estimates for arc

magmatic productivity it is not feasible to independently

determine the relationships between various geodynamic

controls and the rates of melting. We can, however, at least

conclude that a convergence rate-based model produces

geologically sensible results.

[47] Figure 15b shows the rate of magmatic productivity

versus the rate of forearc erosion at the erosive plate

margins. It is noteworthy that the oceanic arc systems, such

as the Tonga, Kermadec and Kurile Arcs, show magmatic

accretion rates far in excess of their erosion rates, despite

the fact that these have some of fastest trench retreat rates

known globally. The net growth in these areas is caused

mostly by the fact that convergence rates are fast, driving

rapid melting that exceeds the rate of crustal loss. In

particular, the Marianas is noteworthy for having not only

high melting rates but also lower forearc erosion, implying

rapid crustal accretion at least in recent geologic times.

Because the arc edifice in the Izu-Bonin-Mariana margin is

not significantly larger than that in Tonga and because it

was initiated at the same time during the Eocene, we

conclude that over long periods of geologic time the two

arcs must have had similar rates of trench retreat and net

growth. This is probably because tectonic erosion has

generally been higher in the Marianas than it has been

recently. In contrast, the South Sandwich Arc has a pre-

dicted slow growth of crust at the current rate of forearc

erosion estimated by Vanneste and Larter [2002]. Our

model indicates that this rate of erosion must be close to

the limit that is stable at the current convergence rate or

there would be no arc edifice remaining. In practice, oceanic

arcs have only a limited range of possible stable crustal

thicknesses and trench retreat rates, given the range of plate

motion rates. At one extreme an arc with a 12 cm yr�1

convergence rate and a 20-km-thick crust would be unstable

Figure 16. Diagram showing the integrated growth or erosion rate of each active plate margin in
relation to the global average growth rate required to maintain the continental freeboard. Note that several
erosive plate margins are actively growing crust despite rapid loss at the trench.
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for sustained trench retreat rates in excess of 6 km m.y.�1,

which would represent a maximum value.

[48] Our model predicts that oceanic arc systems are only

viable entities because of their high melt rate, thin crust, and

fast rates of convergence. Each system is a balance between

the tectonic erosion removing the arc crust and the mag-

matism building it up. If convergence rates are slow, then

melting may not be able to keep up with rates of tectonic

erosion, unless convergence becomes so slow that accretion

takes over as the dominant process. Thinner arc crust is

more stable than thicker crust because a smaller volume of

material is removed for every kilometer of forearc crust

removed by tectonic erosion. For example, at an average

trench retreat rate of 3 km m.y.�1 and a convergence rate of

8 cm yr�1 the crust must be less than 36 km thick in order to

be in state of net growth. Thicker crusts are only possible if

the trench retreat rate is slower (e.g., the Marianas) or if the

convergence rate is faster (e.g., Tonga). These controls may

explain the general pattern in modern oceanic arc systems

for long-term trench retreat rates at �3.0 km m.y.�1 and

crustal thicknesses of 20–25 km.

13.1. Net Crustal Production

[49] The net rates of crustal production or loss in all

convergent margins are summarized in Figure 16. Not

Figure 17. Pie chart showing the relative proportions of
the major inputs and outputs from the global subduction
systems with respect to the crust. Note the dominance of arc
magmatism over subduction accretion as a source of new
material.

Figure 18. Diagram showing the relative rates of material subduction compared to magmatic
productivity in the world’s major subduction zones. The arcs of the erosive margins could theoretically be
sourced from the recycling of subducted materials, while the accretionary margins require new extraction
of crust from the upper mantle.
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surprisingly, the accretionary margins show rapid rates of

growth. The Marianas Arc is the most productive of the

erosive margins, driven by its high melt production and low

erosion rate compared to other oceanic systems. Nonethe-

less, it is noteworthy that all the oceanic arcs, even South

Sandwich, are predicted to be in a state of growth despite

their typically erosive tectonic character. This prediction is

consistent with the geological evidence from these systems.

In contrast, we identify several continental convergent

margins that are sites of significant net loss of crust (South

America, Kamchatka, and the Philippines). In these areas

the magmatic productivity is limited by the moderate

convergence rates, while the significant crustal thicknesses

mean that tectonic erosion has removed large volumes to

great depths below the forearc.

[50] The net loss of crust along continental active mar-

gins, where convergence is too fast to allow accretion, has

significance for the origin of the continental crust. Our

calculations imply that the crustal volume can only be

maintained by the growth of oceanic arc crust, which must

later become accreted to the continental margins through

collisional events. If these blocks were subducted, then the

continental crust would be in rapid decline, unless magmatic

productivity was much higher than we estimate. However,

much higher rates do not seem realistic given the present

understanding of arc magmatism. The role that oceanic

plateaus play in the formation of the continental crust has

been much debated in the past [e.g., Ben-Avraham et al.,

1981]. While the addition of such crust is well documented

in examples such as the Umnak Plateau of the Bering Sea

and the Wrangellia Terrane of western North America, these

represent relatively small and unusual areas of crust. Chem-

ically, plateau crust is typically mafic and enriched and

lacks the relative Nb depletion characteristic of both arcs

and average continental crust [e.g., Rudnick and Fountain,

1995]. In addition, the seismic velocity of accreted plateau

crust is too high in the lower and mid crust [e.g., Morozov

et al., 2001] compared to the continental average [e.g.,

Christensen and Mooney, 1995]. Consequently, we consider

plateau accretion to be a minor contributor to the overall

mass budget of the continents.

[51] The arc accretion process is most clearly displayed in

the modern collision of Taiwan with southern China, during

which the Luzon Arc is accreted to the edge of Asia [Teng,

1990; Lallemand et al., 2001; Clift et al., 2003b]. Prior to

collision, oceanic island arcs make unsuitable building

blocks for the continental crust because their bulk chemistry

is too mafic and light rare earth element depleted compared

to average continental crust [Rudnick and Fountain, 1995].

However, Draut et al. [2002] now demonstrate, using an

example from the Paleozoic Caledonides, that the accretion

process itself is fundamental in transforming the bulk

chemistry of igneous arc crust into a suitable building block

for the continental crust. Thus we now envisage the slow

growth of the continental crust being driven by the mag-

matic production at accretionary margins, coupled with the

accretion of oceanic arcs outpacing the crustal loss at the

continental erosive margins.

13.2. Mass Balancing the Crust

[52] The mass balance in the global subduction zones is

shown in Figure 17, which demonstrates the dominance of

arc magmatic productivity over sediment accretion as a

process for conserving the mass of the continental crust. It

is also noteworthy that the tectonic erosion of forearc

basement appears to be �20% greater than sediment sub-

duction as a source of continental material flux either to the

magmatic roots of the arc or back into the upper mantle. The

rate of material subduction in some erosive margins is

sufficient to account for their level of magmatic productivity

(i.e., the volume of arc magmatism could simply reflect

remelting and recycling of the subducted crust, e.g., Peru,

Costa Rica, and NE Japan (Figure 18)). Similarly, because

of the inefficiency of accretionary complexes in preventing

deep subduction of sediment much of the magmatism in the

accretionary margins could be explained by relatively

shallow recycling. However, isotopic evidence from oceanic

arc systems typically shows that much of the arc volcanic

output is derived by melting of the upper mantle wedge,

albeit with some sediment contamination [e.g., Woodhead

and Fraser, 1985; Ewart and Hawkesworth, 1987; Vroon et

al., 1993]. We conclude that the flux of continental material

through the global subduction systems is not dominated by

shallow, short-term recycling of subducted material through

the arc magmatic roots. Instead, continental materials en-

tering the subduction zone are prone to deeper subduction,

with possible recycling into mantle plumes or mid-ocean

ridges [e.g., Eiler et al., 1996, 2000]. In order to maintain a

balance of continental crustal mass the extraction of new

material from the upper mantle must be proceeding at a

similar high rate.

14. CONCLUSIONS

[53] In this study we demonstrate that rates of tectonic

erosion and sediment subduction have generally been

underestimated as processes that shape the global subduc-

tion systems and consequently drive the generation and

recycling of the continental crust. Indeed, 57% of the global

active margins seem to be of the erosive type in which

significant volumes of forearc basement are tectonically

removed and recycled either to the roots of the volcanic

arc or back into the upper mantle. Globally, eroded forearc

basement constitutes approximately 55% of the crustal

material subducted to depth, the remainder being subducted

sediment. Even at the accretionary margins, typically �83%

of the incoming sedimentary pile is subducted beneath the

forearc wedge and appears to be only partially reworked

into the arc volcanic front. Both accretionary and erosive

convergent margins are major sites of net crust loss back

into the upper mantle. Although there is some overlap in

characteristics, accretionary margins are typically marked

by forearc slopes of <3� and form in active margins where

the rate of orthogonal convergence is <7.6 cm yr�1 and

where the trench sediment thickness is >1 km. The faster the

rate of convergence is, the steeper the forearc slope is,
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implying that basal friction increases with convergence rate.

Not surprisingly, the faster sedimentary rock is supplied to

the margin the quicker an accretionary complex is built,

provided the section is >1 km thick. Convergence rate also

appears to exercise some control over the thickness of

trench sediment because it determines how long any given

piece of the oceanic plate resides in the high-sedimentation-

rate trench zone.

[54] No simple first-order controls on the rate of forearc

basement erosion could be determined from this study

because the rate of trench retreat does not appear to be

controlled by either convergence rate, sediment thickness,

or the age of the oceanic lithosphere. Instead, we conclude

that long-term erosion rates are largely controlled by the

episodic collision of large topographic ridges with the

trench (e.g., hot spot tracks on the subducting plate).

Although fast erosive margins are the most efficient recy-

clers of crustal material back into the mantle, accretionary

margins are so inefficient that they too allow large volumes

of crust to be subducted to depth at a rate linked closely to

the rate of sediment delivery to the trench.

[55] We calculate that in order to maintain the current

volume of continental crust the global average magmatic

productivity must be �90 km3 m.y.�1 km�1 of active

margin. If a moderate rate of net continental crustal growth

is proposed to account for the constant level of continental

freeboard, the average rate increases to 91 km3 m.y.�1 km�1

of active margin. Geological constraints indicate that this is

not uniformly distributed but is instead higher in faster

converging margins, which are often erosive. Convergence

rates, not crustal thickness and melt column heights, appear

to be the chief control on melting rates in arcs over long

periods of geologic time. The magmatic product rates

estimated for the oceanic arcs (81–149 km3 m.y.�1) are

broadly in accord with rates estimated from recent seismic

refraction experiments after accounting for crust lost by

subduction erosion. The model predicts that eroding oceanic

arcs cannot maintain crustal thicknesses >36 km because

higher thicknesses require excessive rates of convergence

and melting in order to maintain the volume. Conversely, the

maximum rate of trench retreat cannot exceed 8.0 km m.y.�1

over long periods without the loss of oceanic arc crust,

which geological constraints preclude. The picture of

crustal mass flux that emerges from this study is one of

net crustal loss in the eroding continental margins and

growth in the oceanic arcs and accretionary continental

arcs, with a volume equal to the entire mass of the modern

continental crust being flux through the subduction zones

every 2.2 Ga.
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