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A modeling study was conducted to determine the conditions under which fluidlike zooplankton of
the same volume but different shagspherical/cylindrical have similar or dramatically different
scattering properties. Models of sound scattering by weakly scattering spheres and cylinders of finite
length used in this analysis were either taken from other papers or derived and herein adapted for
direct comparison over a range of conditions. The models were examined in the ver{kkw-

<1, kL<1), moderately low{ka<1, kL=1), and high-frequency regiornka>1, kL>1), where

k is the acoustic wave numbaea,is the radiugspherical or cylindrical of the body, and. is the

length of the cylindersfor an elongated body with/a= 10, “moderately low” corresponds to the
range 0.xka<0.5). Straight and bent cylinder models were evaluated for broadside incidence,
end-on incidence, and averages over various distributions of angle of orientation. The results show
that for very low frequencies and for certain distributions of orientation angles at high frequencies,
the averaged scattering by cylinders will be similar, if not identical, to the scattering by spheres of
the same volume. Other orientation distributions of the cylinders at high frequencies produce
markedly different results. Furthermore, over a wide range of orientation distributions the scattering
by spheres is dramatically different from that of the cylinders in the moderately low-frequency
region and in the Rayleigh/geometric transition regil): the Rayleigh to geometric scattering
turning point occurs at different points for the two cases when the bodies are constrained to have the
same volume ang?) the functional dependence of the scattering levels upon the volume of the
bodies in the moderately low-frequency region is quite often different between the spheres and
cylinders because of the fact that the scattering by the cylinders is still directional in this region. The
study demonstrates that there are indeed conditions under which different shaped zooplankton of the
same volume will yield similakensemble averagescattering levels, but generally the shape and
orientation distribution of the elongated bodies must be taken into account for accurate predictions.
© 1998 Acoustical Society of Amerid&0001-49667)01210-]

PACS numbers: 43.30.Ft, 43.30.Sf, 43.20[BHM]

LIST OF SYMBOLS YerYp material property parameters in DWBA formula-

A area tion

a radius of sphere or cylinder g p2lpq

a average radius h c,/cq

b(® modal series coefficient for homogeneous fluidi J—1 unless used as a summation index or sub-
sphere script tok

Biitt tilt angle of infinitessimally thin disk or cross | acoustic wave number=(27/\)

section of body at a particular point on the body |

) . o wave number vector of incident field
axis relative to the incident wavg;;;=0 corre-

sponds to broadside incidence to the disk axis at k cosd -
. . . K compressibility

a particular point on the axis
B L/a L length of body
c sound speed L average length of body
A distance that the end of the bent cylinder is benth acoustic wavelength
f scattering amplitude Mp=2 phase advance associated with crossing of caus-
fos scattering amplitude in backscattering direction tics[=—(w/2)k,a/(ka+0.4)]
£() form function for an infinitely long cylinder Pscat scattered pressure
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Po incident pressure Ops differential backscattering cross section
r distance between scatterer and receiver o backscattering cross section
Pec radius of curvature of longitudinal axis of uni- TS target strength

formly bent cylinder T4, To1  transmission coefficients for transmission from
p mass density medium “1” to “2” or “2” to “1,” respec-
I pos position vector of axis of deformed cylinder tively [Ti;=2(p;cj/pici)/ (1+(pjcj/pici))]
r, position vector of volume 0 angle of orientation relative to the direction of
ra position vector of area the incident acoustic wav@=0 corresponds to
1o plane wave/plane interface reflection coefficient broadside incidenge

(reflection off medium “2” due to incident V total volume of body

beam in medium “1) [=(psCr/piCi v volume of integration

—1)/(psCa/piCi+1)] 1,2 subscripts indicating medium “1(surrounding
RTS reduced target strength fluid) and medium “2” (body medium
S s /L (o) average over ensemble of statistically indepen-
Sp,SL standard deviation of angle of orientation or dent samples

length, respectively (all quantities in mks unids
INTRODUCTION focus on geometrical factors, the dependence upon bulk ma-

terial properties of the bodies will receive only minor atten-
There has been an evolution of modeling of the scattertion. The work is limited to homogeneous weakly scattering

ing of sound by zooplankton in recent years. Up until thebodies that have smooth boundaries. Direct comparisons are
mid-1980s, zooplankton had been modeled mathematicallphade between bodies of the same volurf&nce the ani-
almost exclusively as sphereGreenlaw, 1977, 1979; mals have mass densities close to that of water, comparisons
Johnson, 1977; Holliday and Pieper, 1989; Stan¢tml, based on bodies of the same volume are approximately
1987; and summarized in Holliday and Pieper, 199%he  equivalent to comparisons based on bodies of the same bio-
approaches involving sphere models have seen succé€bs asvolume) The models are presented in terms of both single
some animals are nearly spherical g@fthe sphere model realizations of size and orientation as well as averages over
can be considered to be a “first-order approximation” underangles of orientatioriin the case of cylindejsand narrow
some conditions for the very complicated scattering procesdistributions of size. The average over size is performed to
of animals with more complex shape. However, the shape afelate to either “single-sized” aggregations of zooplankton
some animals deviates significantly from that of a sphere andhose size distribution has a narrow, yet finite width, or a
can possess dramatically different scattering properties undgarticular size bin of an aggregation with a broader size dis-
certain conditions. For example, euphausiids and shrimp ar&ibution.

quite elongated with length-to-width ratios of order 5 or

higher. These animals have recently been modeled as finite

length cylinders and it has been shown that the scatterinp MODELS

properties are dependent upon shape and distribution of orl-

entation anglegStanton, 1989; Stantoat al, 1993b; Chu A. Basic quantities

et al, 1993; Demer and Martin, 199% addition to material A fundamental quantity common to all scattering models

properties, size, and acoustic frequency. _ is the scattering amplitudiewhich can be defined in terms of
Certain important aspects of our understanding of thne incident and scattered pressures as

scattering of sound by finite cylinders are relatively mature.

It is therefore timely to perform a systematic comparison

between the scattering by cylinders and spheres under a wide

range of conditions. B|oma§s 'S an Important guanuty '.nwherekl is the wave number in the surrounding wafere-
zooplankton abundance estimation and acoustic scatterm(ﬂum ap

eiklr
Pscar= Po e f, 1

) . . ; ).
levels are quite often expressgd n ter.ms .Of animal biomass. From this definition, the target strength can be defined as
Thus, for zooplankton acoustics applications and for these
comparisons, it is important to formulate the scattering in ~ TS=10 log f,d?=10 log o1,= 10 log o/47r), 2

terms of _bodles of the_ same biomass. . where the target strength is also expressed in terms of the
In this paper, various sphere and cylinder models fron}

} o . . 0 backscattering cross sections that appear in the literature
previous publications are reviewed and others are denvefﬁrick 1983: Clay and Medwin, 1977Here the scatterin
herein. All are written in a form so that direct comparisons ' ' Y ' | 9

can be made analvtically under certain limiting conditions amplitude is evaluated for the backscatter direction. The
y y 9 ‘units of target strength are dB relative to #.rThe “mean

Numerical simulations are performed to provide compariso o
” I1target strength” is based upon the ensemble average of the
over a broader range of conditions. Dependence of the sca

tering upon size, shape, orientation distribution, and acoustigd"a"® of the magnitude of the scattering amplitude:
(TS)=10 log|fp4?). 3

frequency are investigated for the various bodies. Given the
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Sometimes it is convenient to examine the targetderive analytical expressions for scatteri@puet al., 1993;
strength on a dimensionless scale. The ‘“reduced” targeStantonet al, 1993b, 1998 The material properties are de-
strength RTS normalizes the target strength by the square stribed by the termsg/, and y, and are allowed to vary
some outer dimension of the body: within the body in this formulation. Those parameters can be

9 _Ta 9 . expressed in terms of the compressibililymass density,
RTS®=TS-10log ma’) (sphere of radiusa), (4) density contrasg, and sound speed contrdss

RTS®?=TS-10logL?) Kok, 1—gh?

(elongated body of length.). (5 Y= K1 gh® ®
B. General models y = P2—P1_ 9-1 9)
. . g P2 g’

There are many approaches to modeling the scattering of
sound by objects. The particular approach depends upon thighere the relation
shape and material properties of the body as well as condi- k=(pc?) L (10)
tions such as frequency ranger more precisely, range of
size-to-wavelength ratjoldeally, one would wish to use an and the definitions
exact model. However, exact solutions to the acoustic wave
equation exist only for a small number of shapes, the sphere = G2 g= &, (1)

being one of them. For shapes such as a finite cylinder, an i’ P1

approximate approach is required. _ were usedthe “1” subscripts refer to the surrounding water
The_exact solution for the scattering by a fluid spheregg the “2” subscripts refer to the boglyFor weakly scat-
was derived by Anderso(1950 and can be written for the  (qring z00plankton wherg and h are each approximately
(farfield) backscattering direction as several percent above unifg.g., ~1.04, y, and y, are
P - approximately— 0.1 and 0.04, respectively.
fbs=k— 2 bﬁﬁ)(—l)m, (6) For elongated bodies of circular cross section and uni-
1 m=0 form material properties within any given cross-sectional

whereb( is the modal series coefficient for the fluid sphereslice, two of the integrations can be performed analytically,
andk;, is the acoustic wave number in the surrounding fluidleaving a one-dimensional integral:

medium. This equation is exact for all homogeneous materi- K

als that do not support a_shea_r walgas or liquid. (The fbs=zl a(ye—7,)

above equation is also written in a general enough form to "pos

apply to sol_|d elastic sphe_res and _spherlcal shells, provided kot J1(2k,a cos B

the appropriate modal series coefficients are used. X e“!\%i)2" Tpos CoS B |drp05Jy (12
tilt

For more complex shapes for which there is no exact
solution to the wave equation, approximate solutions are rewherelJ; is the Bessel function of the first kind of order one
quired to describe the scattering. The distorted wave Bormnd the integral is along the axis of the body whose position
approximation(DWBA) is a useful formulation as it can is described by . (Stantonet al, 1998. This formulation
predict scattering over the entire rangeksf and for arbi-  describes the scattering by deformed finite length cylinders
trarily shaped bodies at any angle of orientation. It is re-in which the radius of each circular cross section as well as
stricted to weakly scattering materials in that the density andhe material properties are allowed to vary with position
speed of sound of the body must be very closihin about  along the lengthwise axis. The axis of the body is allowed to
10%) to that of the surrounding medium. Animals like eu- bend. This formulation is valid for aka and all angles of
phausiids fit that requirement as their density and soundrientation, but restricted to weakly scattering materials.
speeds are to within several percent of those of the surround- A formulation that is very convenient to use in the geo-
ing water. The DWBA is given in general form @slorse  metric scattering region is the Kirchhoff or geometric optics
and Ingard, 1968 integral (Born and Wolf, 1991; Gaunaurd, 1985 his sur-

K2 ) face integral is given by
fos= 1 (Y= 7,)€2002 e d Y
bs A v Y= Yp v,

where the integration is within the entire body whose volume

is described by the position vectoy. This formula is the  where the integral is over the surface described by(k;);
complex conjugate of the one presented in Morse and Ingarig the incident wave number vector evaluated in medium 1.
and is consistent with the phase shift convengdf” foran  The “"” indicates a unit vector and, is the outward nor-
outgoing scattered wave. Also, in this “distorted wave” for- mal unit vector to the surface. The plane wave/plane inter-
mulation, the incident wave number vector in the exponent isace reflection coefficient;, is used in the Kirchhoff ap-
evaluatedinside the body or medium “2"[(k;),]. This  proximation that led to this formula and takes into account
equation is very convenient to perform numerical integrathe penetrability of the material by the followin@lay and
tions to check other formulations as well as to be used tdMedwin, 1977; Ogilvy, 199t

iky S ok
fbszﬁ%ﬂf fA(ki)l'nAelz(k')l'rA dA, (13
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gh—1 These formulas are convenient for making calculations
%ngh—Jrl- (14 of the scattering by complex weakly scattering bodies in the
long wavelength limit, especially when there is no exact so-
Holding the reflection coefficient fixed during the integration |ytion for the body of interest. Because of the long wave-
is an approximation as it will, in general, vary with angle of jength restriction, the usefulness is limited. For objects re-
incidence. sembling spheres, the equations are valickfas 0.5, where
Finally, another formulation describing the scattering of js the equivalent spherical radius. While the scattering lev-
sound by deformed cylinders is given by the following line g|s for spheres are small in this region, they might be detect-

integral (Stanton, 1989, 1992 able. However, for objects that are very elongated such as
—j euphausiids, the usefulness of the equations is more limited
fpe=—— e‘”"‘J fi) than for spheres because of the condiidr=1.0. For elon-
2\/; Mpos gated bodies with ratios df/a of the order 5 or greater, this

120i2(K)1- T oo (kL) condition results in the equations being valid only for
X(kya cos Byy) e Trogdrpod (15 ka=<0.2, wherea is the cylindrical radius. In th&a<0.2
where the form functiori*) for an infinitely long cylinder is region, the scattered levels might not be detectable by an
used in the integrand. The tenrp,sis the position vector for  echosoundetespecially when individuals rather than dense
the axis. This approximate formulation is valid for kh and  aggregations are involvgdhence a more complex approach
for any material property profilée.g., fluid, solid elastic, with fewer approximations needs to be used in calculating
fluid-filled shell, etc) that is symmetrical about the axis in the scattering by elongated bodies in the detectable region.
any given cross-sectional slice. The formulation is only valid

for angles near broadside incideng@sithin about 15° of D. Sphere-single realizations

broadside for straight cylinders and a wider range for bent
cylinderg and for high ratios of length to width
(length/width=5). For a study on the range of accuracies of
this model, see Partridge and Sm{ttP95. Hence two de-
formed cylinder formulations are provided above. One base@
on the DWBA weak scattering theofiq. (12)] that is valid
for all angles of orientation, but is only useful for weakly
scattering materials. The other is based upon infinite cylind
form functiong Eq. (15)] and is applicable to a wide range of
material properties, but is limited in its usefulness with re-  fps=a(k;a)?e,s, kja<l, (18
spect to angle of orientation.

For spheres in thka<1 or Rayleigh scattering region,
the exact modal series solution can easily be used to predict
scattering levels by taking the loka limit in the modal
eries terms. In the lovka limit, the first two modes of
ibration (m=0 monopole term andh=1 dipolelike term

are of the same order dfa and dominate the remaining
terms of the series. Keeping only those terms gives the fol-
eIrowing commonly used expression:

where
1-gh®> 1-g
v =

=5+
C. Arbitrarily shaped bodies— kd<1 ™ 3gh®  1+2g (19

For weakly scattering bodies of any shape and with allThis equation shows that the scattering is a function of a
dimensions of the body much smaller than the acoustiproduct of the square of the wave number and the cube of the
wavelength(or more preciselykd<1, whered is the great- radius (Anderson, 1950 This limiting expression can be
est outer dimension of the body such as leigtiie scatter- compared directly with the DWBA result given in E(L6)
ing can quite readily be calculated with the DWBA ap- by writing a in terms of the volume of the body and substi-

proach: tuting equivalent expressions fgr, andy, given in Eqs(8)
K2 and (9) into the DWBA result. The comparison shows that
fbs:ﬁ (Ve Yp)V. (16)  the two approaches produce nearly identical results with the

only difference being in the material property term: the de-

In this Rayleigh scattering limit, the scattering amplitude ishominator 2g in the modal-series-based solution is re-
shown to depend upon the product of the square of the wavdlaced by the term @ in the DWBA expressiorithis com-
number and volumeY, of the body. The integral in the parison is made with a factor ¢f moved from outside to
general DWBA integral[Eq. (7)] was performed quite inside the parentheses in the DWBA expression for direct
readily as the exponent in the integrand was negligibly smalfomparison For weakly scattering bodieg is to within

and the integral reduced to integrating a constant véage  Several percent of unity making+12g~3g~3.

suming that the material properties were constant inside the !N the region in whictka is of the order unity or greater,
body) over the volume. The scattering does not depend upof’® modal series solution requires more terms to converge
angle of orientation which is what one would expect in thisand it becomes cumbersome to deal with analytically. Cer-
long wavelength limit. An average of the square of the magiainly, the solution can be programmed into a computer for

nitude of the scattering amplitude over angle of orientatiorlumerical results. However, making use of the modal series
and a distribution of sizes gives, quite trivially, for analytical means is tedious. One approach to circumvent

this problem involves applying th@pproximate Kirchhoff
17) integral in which the scattered field is estimated by summing
contributions from the front and back interface of the body in

2\ _ k? 2/\/2
<|fbsl >_ 16’7T2 (7K_7p) <V >
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theka>1 region. Using the Kirchhoff integral given above, F. Cylinders—Single realizations

the backscattering by a weakly scattering sphere is approxi- For the backscattering by straight cylinders in te

mately <1 region, the deformed cylinder formulation has been used
foe= sa. 72,2 12KIB(1+ T ,T, e 4ked) (200  to produce the following equatio{Stanton, 1988, 1989
where the transmission coefficients due to the passing of théys=3(Kia)’La,.Dsd(#), straight cylinder,k;a<1,
wave through the front interfacéirst into the body, then (25
back out of the bodyare given as where the directivity function is given as
2gh 2 sin(k;L sin 6)
T12_1+—gh_11 T21_1+—gh_1' (21) DSC( 9)2 W (26)

The reflection coefficient from the back interface is simply and the material property term is

equal to the negative of the one from the front interface and 5

a simple substitution for it in terms of2;, was made. N _1-gh 19 27
Here the integral was performed by dividing the integral ™ 2gh® " 1+g°

into two parts, one over the front interface where the Kirch- Here. the modal-series-based form function of the infi-

hoff expression was used directly and the other over the back. '

interface where the expression was multiolied by the roducnitely long fluid cylinder was used in the calculations. By the
P P ythep ﬁature of this approximation, the result is only valid for near
T4,T,; to account for the fact that the wave experiences

sliaht loss of sianal when traveling throuah an interface Th;broadside incidence. Calculations for near end-on incidence
'9 'gnal w Veling ug ! ) ould depend strongly upon the particular shape of adl

normal to the surface in each integral is aimed in the gener ointed, rounded, etc. It has been convenient to approxi-

?cl)rret%tleoproc:ttiz?e?% l::gdai?jui;d\:a/;éj I;z)srr;haﬁ fc:) litmaer(jb;:; ?:]?(Iar_mate the directivity function in Eq26) in terms of a Gauss-
ian function agStantonet al., 1993h

face. The resultant equatiofiEq. (20)] shows contributions
from both interfaces where the first tefftl” ) in the paren- Dee=easckl??® o ~0.2. (28)
theses corresponds to the contribution from the front inter- . o

face and the second term is due to the back interface. ThEN€ empirical directivity parametetsc should not be con-
phase shift difference between the echoes from the front anfSed with the material property parameterss and ac .
back interfaces is clear in the second term. This phase dif!Vith this expression, averages over orientation can easily be
ference will give rise to interferences between the echoed'@de as shown in a later secti@®tantonet al, 1993).

from the two interfaces. The interference will be constructive _ 11€ Same modal-series-based deformed cylinder formu-
or destructive, depending upon the valuekat lation has also been used to estimate the scattering by bent

cylinders. The resultant formula for lowa is derived from
Stanton(1989 and Stantoret al. (19930 as

E. Sphere—Average echoes 1 2 ) i
. . fos= —— (pcN) " (K@) “acDpc(0)e'™,
Since the scattering by spheres does not depend upon the 2V2
angle of orientation of the sphere, the average over angle of . . S
orientation is trivial. Averaging the square of the magnitude bent cylinder, kja<1, 2k;A>1, (29
of the backscattering amplitude in thea<1 region[Eq.  where the directivity function,
(18)] over a range of sizes is quite simply
(Ifod?a=Ki(a%)aa%s  Kkia<l. (22

TSs?

Dpc(f)=e ®sc@0e/L? 4 =08, (30)

has been added heuristically to include effects due to orien-
The bracket---) , denotes the average over a distribution oftation (Stantonet al, 1993b (§=0 corresponds to the case
a. For theka>1 region, the average over a narrow Gaussiarof “broadside” incidence where the cylinder is bent sym-
distribution of sizes using Ed20) is metrically away from the transdugerfThe empirical direc-
tivity parameteragc should not be confused with the mate-

2y 132 02 ~8(kpas)? %) s . : ;
(Ifod%)a=z2a" 723 1+ 729" coddka)],  kja>1 rial property parameters, anda .. HereA is the distance

(23 that the end of the cylinder is beth =0 for a straight cyl-
~ 13252 (24) inden. This directivity function is based upon a reasonable
2 12 estimate of the angle beyond which the scattering decreases
whereT,,~T,;=1 was used. dramatically with angle. However, it does not provide accu-

This average shows that the oscillatory effect due to theate estimates of the scattering for near end-on incidence,
interference between the two interfaces becomes exponemvhich, as discussed in the above straight cylinder case, de-
tially small for highka. In the highka limit, the average pends strongly upon the particular shape of the end. The
backscattering energy is simply equal to the sum of the enfunction is convenient for averages over orientation as dis-
ergy from each interfacéhe square of the magnitude of the cussed in a later section.
backscattering amplitude from each interface is equal to In theka>1 case, the modal-series-based approach be-
%?.%fz). comes difficult to manipulate algebraically because of the
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fact that it takes many terms for the series to converge. Sevstantonet al. (1993h. Equation(35) was derived here in the
eral approaches can be used in this case—the DWBA, Kirchsame manner as E(B6). SinceA;; was verified numerically
hoff, or form-function-based deformed cylinder solution. In adown to aboutka=0.1 in Stantoret al. (1993h, the same
recent study, a ray-baséfbrm function deformed cylinder A;; are used in both Eq$35) and(36). For the case of bent
formulation was used to produce the following equation forcylinders with a Gaussian distributed orientation andlg,
the straight cylinder andka=0.1 (Stantonet al, 1993a, =T§C§S(,/(16\/a_Bsg). A;; for other cases are given in

1993h: Table | of Stantor{1993h. Cjy is an empirical parameter and
i is approximately equal to 1.2 whilgs in this case is equal to
_ | LimlAg—izka % unity. S, is a complex function of the width of the main lobe
fos 2\ ee LWQDSC( O)lo. of the scatter pattern and orientation distribution parameters
(Stantonet al,, 1993h. For orientation distributions that are
kia=0.1, (32) wide enough so that the entire main lobe is “seen” by the
where receiver over the course of the averaging, ti&n-1. The
= 1= Ty, et koteiup-a(kaa) (32) approximationT,=T,;=1 was used in Eq.36).

Each formula involving a Gaussian distribution of orien-
and tation angles assumes that the bell part of the Gaussian dis-
_ tribution contains the broadside angle. It is this assumption
pp=2(ked) = = (mf2)ka/ (kya+0.4). (33 hat allows use of the Gaussian form of the directivity func-
The termu,-,(k,a) was added heuristically to remove cer- tion. If the broadside angle is part of the averages, then the
tain phase effects so that the formula, normally valid only forresultant levels near broadside will dominate the small near-
ka>1, could be applied to values &k down to about 0.1. end-on levels. Hence, errors in the end-on levels are not sig-
In this formulation, a ray-based form function for the infi- nificant in this case. Various numerical simulations involving
nitely long fluid cylinder as presented in Marstd@®992 was  the more precise DWBA approach support this assumption
incorporated into the deformed cylinder formulation. Equa-(Stantonet al, 19930).
tion (31) is broadly similar to that of the sphere fka>1 in
that two terms appear, one corresponding to the echo from
the front interface of the body and the other due to the bacll<_| Average scattering by targets of equal volume
interface. They differ greatly due to the dependence of the”
scattering by the cylinder updka and orientation. Some of the above formulas for averaged echoes are
For the uniformly bent cylinder, the same ray-based denow reformulated so that they can be compared with each
formed cylinder formulation as described above is applied t@ther. As discussed above, an important quantity in zoop-
the bent cylinder geometr{Stantonet al, 1993a, 1993b  lankton studies is biomass, which is directly proportional to
The result of that analysis is the volume of the animal. The scattering formulas are there-
_1 12 A-i2kja fore reformulated in terms of the volume of the body.
Fos= 2(ped) 7128 Dic(0)1 o, (34) For arbitrarily shaped objects in the low-frequency re-
where the directivity term has the same limitations as in theyion, Eq. (17), which describes the average square of the

ka<1 case. magnitude of the backscattering amplitu@e average back-
scattering cross sectiprcan be used directly from the above
G. Cylinders—average echoes analysis without modification. The formula is valid for

‘weakly scattering bodies where the wavelength is much

Averaging the square of the magnitude of the backI th di i f the b isel
scattering amplitude over angle of orientation takes advan2nger than any dimension of the odgr more precisely,

) . s kd<1).
tage of the Gaussian form of the above-mentioned d|rect|V|t)}( :
functions. Averaging over both angle of orientation and a, At moderately low frequencies wheka<1 butkL=1

narrow Gaussian distribution of size results in the foIIowingforl_gﬁlinderﬁ’ ECI-I(l?h doesdnottalpplly(al];[hough it is Sti"f
set of expressions: valid for spheres In the moderately low-frequency case for

cylinders[Eq. (35)], the relationship for volum¥ = 7ra’L is

<|fb5|2>,_Y0=Aij w(kla)saiyf,c, k,a<1, ki L=1, used along with3=L/a to obtain the following formula:
(39
— - 2
fod2)L o= 2A;. 72 AL[ 1—e 8eas)? Ajjas
(Ifod )00 ij- 1AL <|fbs|2>: (71-,8)263 k?V5’3,

X cog4kpa+ up_p)], kja=0.1, (36)
) = all cylinders, kja<l, k;L=1, (39
(Ifod®)L.o=2A;7278L, kia>1, (37)

where the termA;; takes on different values for different where now the average backscattering levels from cylinders
combinations of shapes and orientation conditistsaight/  depend upon the product &V>2. For an object with_/a

bent cylinder, Gaussian/uniformly distributed orientation= 10, these moderately low frequencies are in the range 0.1
angle. Because Eq(36) involves an extension into thiea <ka=<0.5. As with Eq.(35), this equation is restricted to the
<1 region, there is overlap in the frequency regions incases in which the main lobe of the scattering pattern faces
which Egs.(35) and(36) can be used. Equatidi86) is from  the receiver during part of the averaging.
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TABLE I. Functional dependencies of averaged backscattering upon wave ~

number and volume for spheres and cylinders. Actual scattering levels alsc 2

depend upon material properties affiok cylinderg distribution of angle of

SPHERE STRAIGHT CYLINDER BENT CYLINDER

I
=
orientation. The angular distributions for the cylinders in khe=1 region g 7 -70 70
are restricted to the case where the main lobe of the scatter pattern is in E " %0 %0
cluded in the average. The averages over size are for a narrow distributior ﬁ
of_5|ze. Volgmg dependence of scatt_erlng‘W|II_change for cyllnders for cer- W10 50 w0 600 A0 e e 1% 2e0 460 600
tain other distributions of angle of orientation in tke=1 region. C FREQUENCY (kHz)
-

Cylinders
straight and bent
<‘fb42>L,9 Sphere
(0<o<2m) <|fb42>a
< 4\ /2
ka<1 ::::: 1 :stsls kiv?
ka>1 kL>1 V23 V23

In the high-frequency region wherea>1 (kL is, of
course, much greater than unity in this region al$loe cor-

FIG. 1. Theoretical target strength versus frequency for one ping each off of
an individual sphere, straight cylinder, and bent cylinder. All bodies have
the same volume of 0.30 dnwhich corresponds to a 34-mm-long eu-
phausiid. The upper curves in the cylinder plots are for broadside incidence
and the lower plots are for end-on incidence. The acoustic or “reduced”
length of the animal is 29 mm, the cylindrical radius is 1.82 mm for the
cylinder model, and the equivalent spherical radius is 4.16 mm for the
sphere model. The length is reduced to account for the fact that the 5-mm
telson or “tail-section” of the animal is thin and probably does not scatter
much sound. The exact modal-series solution was used for the sphere case
[Eg. (6)] and the DWBA method was used for both cylindgs|. (12)]. For

all plots, g=1.0357 andh=1.0279[these values were taken from Foote
et al. (1990 and Footg1990, respectively, as they were measured directly

responding average echo formulas are reformulated in ternigm live euphausiids For the bent cylindep. /L =3.0 (this value for cur-

of the volume of the body to obtain

1 3 2/3
<|fb512>az§ (E) TAN?R sphere, k;a>1, (39)
=0.1972,v?" (40)
and
2 2 113 »2 \ 213
<|fbs| >a,0:p§Aijﬁ ST\
all cylinders, ka>1, (419

22
_ TicES, g
8\Vagm?® So
bent cylinder, Gaussian distribute@ika>1,

13 (41D
~0.094" (410

2\ 7213
,ﬂlzv y

TN,
4
where the same orientation restrictions apply to E4%a—
(419 as for EQgs.(35)—(37). Equations(39) and (40) were
based on an average of E@4); Eq. (419 was based on an
average of Eq(37); Eq. (41b used anA;; element from
Table | of Stantoret al. (1993h; and Tg=1, ag=0.8, Cy
=1.2, andS,~1 were used for Eq41c and were taken
from Stantonet al. (1993h.

For the case of euphausiids whe@~16 and s,
=0.349 rad(20°), Eq. (410 can be further reduced to

< | fbs| 2>a, 6= 0-68%3%2V2/31

euphausiid, =20° motion, ka>1. (42

vature is chosen as it is a reasonable representation of the degree of bend for
a fully extended euphausijidAll objects have a smooth boundary and ho-
mogeneous material properties.

I). There are significant deviations in scattering levels in the
moderately low-frequency case and high-frequency case for
certain ranges of orientation distribution.

Il. NUMERICAL EXAMPLES
A. Bodies of fixed volume and material properties

Numerical evaluation of some of the general solutions
allows examination of the scattering properties over a wide
range of conditions. The exact modal series solution for the
fluid sphere and the DWBA integral are used in numerical
calculations of backscattering by fluid spheres and straight
and uniformly bent cylinders, respectivelfFigs. 1-3. All
bodies have smooth boundaries and homogeneous material
properties. Calculations involving the cylinders were done
for fixed angle of orientatior{(Fig. 1) and distributions of
orientation angl€Figs. 2 and 3 The mean angles of 20° and
45° and standard deviations of 20° in Fig. 2 were chosen to
represent swimming krill insonified by a downward looking
echo sounder(Kils, 1981; Endo, 1993; Miyashitat al,
1996. The mean angle of 90° was chosen to represent cer-
tain elongated animals that would be swimming toward or
away from a downward looking sounder such as during di-
urnal migration. The uniform distribution of angles repre-
sents the case in which the sounder is looking sideways and
there is no preferred swimming direction in the horizontal
plane. Since voluméor biomas$ of zooplankton is of par-

The motion is distributed about an arbitrary mean angldicular interest, the volume of each objéspheres and cyl-

provided that the main lobe of the scatter pattern is “seen”inders is held fixed at 0.30 cfhas other parameters such as
by the transceiver within the range of motion. As can be seefrequency are varied. This volume corresponds to a 34-mm-
in the above equations in Secs. IC—H, while the formulas fotong euphausiida shrimplike animalwhose length-to-width
single-realization broadside echoes from the various cylinfatio is about 8. The material properties, density and sound
ders and spheres depart from each oteecept at very low speed contrast, were also chosen to resemble those of a eu-
frequency where shape is not a fagtdhe averaged echoes phausiid. The radius of the sphere is considered the “equiva-
are functionally very similar under certain conditiofi@ble  lent spherical radius” of the animal.

260 J. Acoust. Soc. Am., Vol. 103, No. 1, January 1998

Stanton et al.: Spheres and cylinders 260



-60 . : : ; ; ; ; region ka>1). Although the transition or “turning” point
cylinder at which the scattering changes from Rayleigh to geometric
sphere | occurs atka=1 for both spheres and cylinders at broadside
incidence, the point occurs at different frequencies for those
1n20.20) bodies once the volume is held constéhe “a” is different
E(nzlgfnf) for the sphere and cylinders=or example, for bodies of the
] same volume of 0.30 cinthe point occurs at about 75 kHz
for the sphere and at about 150 kHz for the cylinders whose
orientation is at broadside incidence or includes broadside in
the averageg§Fig. 3). The turning point for end-on cylinders
is at a lower frequency than for the cylinders at broadside
incidence.
100 200 300 400 500 600 700 800 In addition, the target strength versus frequency pattern
FREQUENCY (kHz) for each object possesses an oscillatory pattern in the geo-

metri ring region. Th illations ar iall
FIG. 2. Average theoretical target strength versus frequency for scatterin etric scattering regio ese oscillations are especially

by statistical ensemble of spheres and bent cylinders. The target streng Onouncef_j when only Slng|§ echoes are e).(am(ﬁ.u‘l]i 1.
was averaged on a linear scale as described i@ dor the models used in ~ An interesting trend occurs in the geometric region of the

Fig. 1. The scattering by all bodies is averaged over a narrow Gaussiagtraight cylinder at broadside incidence where the trend of
distribution of sizegs.d. of Gaussian is 10% of mean body length or diam scattering increases with frequency.

eter, averaging is done over the range, mean si2es.d). In addition, the . L
cylinders are also averaged over various normal distributions The levels of the backscattering for end-on incidence are

[N(0, s.d. of 6)] of angle of orientation and over a uniforf, 2] dis- markedly lower for these elongated bodies than for the
tribution in one cased=0° corresponds to broadside incidence ar{@as, broadside case§-ig. 1). The level of the scattering in this
20°) is a distribution centered about end-on incidence. The models, bodygge is strongly dependent upon the shape of the end of the
dimensions, and values gf h, andp./L are the same as in Fig. 1. Units of . . . .
all angles in figure are in degreesf body [rounded in this case gccordlng .t.o the equatigm) .
=ay\/(1—(22/L)D), wherez is the position along the axis
_ (z=0 is the center of the body arzs= = L/2 at the endsand
_In general, the overall levels of the scattering by thea =a(0) is the (maximun) radius at the middle of the ta-
cylinders depend upon the distribution of orientation anglepered bodyl. Note also that boundary roughness and material

especially at the higher frequenci@sg. 2). Some distribu-  heterogeneities also strongly influence backscattering for
tions will produce scattering levels close to that of theend-on incidencéStantonet al, 1998.

-85

70t
-751
.80 L
85y N(45,20)

-90 IN(90,20)

-95r
-100r

TARGET STRENGTH (dB)

-105

-110

Sphere, while others will cause it to deViate-Signiﬁcamdy Once the echoes are averaged over a range of orienta-
the order 3—10 dB At the very low frequencies, all models tions and sizes, some of the differences between the scatter-
converge to the same levels. ing by the sphere and cylinders tend to dimin{Eigs. 2 and

The scattering properties of all objects under investiga3). For example, for distributions of orientation that include
tion are characterized by a Rayleigh scattering redlom  proadside incidence in the bell part of the distribution, the
<1, wherea is either the spherical or cylindrical radius of average backscattering by all bodies at high frequencies
the body. Also, each object possesses a geometric scatteringas1 or frequencies much greater than 150 kHz in this
example tends to be nearly constant with respect to fre-
qguency and within about a 10-dB range of val{i€ig. 2 and

other calculations, such as(®,209, not shown. Average
— =70} cylinder, N{20,90) scattering levels for straight cylinders have been shown to be
g quite similar to those of bent cylinders over a wide range of
T -80f conditions(due to conservation of energgnd are not shown
§ in this paper(Stantonet al, 1993b.
% % B. Bodies with other volumes and/or material
5 100} properties
o For bodies with different volumes and/or material prop-
g-110r erties, predictiongnot shown are broadly similar in form
X 120l (but with different magnitudegto those given in Figs. 1-3.
’ For example, for an anima} the length of the 34-mm-long
one simulated in the figure@nd 5 the width, correspond-

-130 : :
10' 10° ingly), all curves would shift down uniformly by 20 dB and
FREQUENCY (kHz) to the right by one decade of frequency. This uniform shift

comes about by the fact that the square of the diameter

FIG. 3. Comparison between average theoretical target strength of sphe .

and bent cylinder under conditions where the predictions were close to eac@phel‘é or sqga_re of the Iengmy“n_der) can be fa(‘?tored out
other at high frequencies. Averaging performed over narrow Gaussian di?f €ach prediction of backscattering cross section. Further-
tribution of sizes for both the sphere and cylindas described in Fig.)2 ~more, the predictions can be expressed in terms of the di-
and angle of orientatiofcylinder only. The models, body dimensions, and mensionless produd(a. As a result, predictions are quite

values ofg, h, andp./L are the same as in Fig. 1. often presented in terms oéducedtarget strengttti.e., nor-
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malized by the square of a dimensjorersuska (Stanton, In the geometric scattering region, the phase varies
1988, 1989. The RTS plots are valid only when the absorp-within each cross-sectional slice of each bddphere and
tion of sound within the bodies is negligiblabsorption does cylinderg as well as along the length of the elongated bodies
not scale according to wavelength and body sitieis also  (except for the straight cylinder at broadside incidenge
particularly useful when the ratios of length-to-width and complex phase variabilities give rise to both an oscillatory
length-to-radius-of-curvature of the lengthwise axis of thepattern in the target strength versus frequency plots as well
elongated bodies remain fixed for a given RTS plot. The lasas a trend in that pattern that depends upon shape. The os-
set of conditions is a restriction of self-similarity of the ob- cillatory pattern is due to the fact that there is more than one
ject shape which is reasonable for marine organisms. echo coming from the body. A small fraction of the energy
For weakly scattering bodies of different material prop-of the incident acoustic signal will reflect off an interface
erties, the changes are related to differences between the nfacing the acoustic source. However, since this is a weakly
terial propertiegor their productsand unity[e.g., Eqs(7)—  scattering body, most of the incident acoustic signal passes
(9) of this paper; Anderson, 1950; Greenlaw, 1877 into the body relatively unaffected. The internal acoustic sig-
Repeating scattering calculations in this paper for differenhal will then reflect off of an interface that is facing away
density and sound speed contra@sand h, respectively,  from the sound source and reflect back toward the source.
the levels increase by about 10 dB whemi()=(1.1,1.1)  These two echoes will interfere constructively or destruc-
and decrease by about 10 dB fag,l)=(1.01,1.01) when tively according to the value of the separation of the faces
compared with calculations in this paper which usegchj  with respect to the wavelength of the sound. For a sphere, the
=(1.0357,1.0279). The locations of the peaks and dips inwo faces are simply the front and back interface of the bodly,
the TS versus frequency plots shifted horizontalpme-  regardless of orientation. For each type of cylinder at broad-
whay as the material properties were varied. side incidence, the interferences correspond to echoes from
the front and back portions of the body cross section, while
for end-on incidence the echoes from these extended bodies
Ill. DISCUSSION come from the front and back ends of the bodies. The period

The similarities and differences between the variousf oscillation of the target strength versus frequency curves
scattering predictions can be explained in terms of basic scals related to the radius of the sphere and cylindrical radius of
tering principles. the cylinders at broadside incidence, while it is related to the

In the very-low-frequency case in which all dimensionslength of the cylinders at end-on incidence.
of the bodies are much smaller than a wavelength, the mod- The trend of the oscillations depends upon whether or
els show that the scattering levels for the sphere, straighiot the object is curved in one or two dimensions. For
cylinder, and bent cylinder are the same. This is due to thépheres and bent cylinders at broadside incidence, the trend
fact that in this very-low-frequency region, the phase of thelS constant with respect to frequency. This is related to the
echo from each part of the body is the same, regardless dact that both are curved in two dimensions. However, for
position within the body. The scattered levels then dependhe straight cylinder at broadside incidence, the trend in-
only upon the volume of the body, regardless of the shapecreases with frequendgctuallyka) because of the fact that

In the case of moderately low frequencigé®., ka<1  this cylinder is curved only in one dimension. This effect is
andkL=1), the length of the cylinders plays a role. Becauserelated to the fact that the size of the cylinder remains much
of phase variabilities of the echoes along the length of theémaller than the first Fresnel zone in theé8aite cylinden
elongated bodies, the scattering becomes dependent upealculations(Stanton, 1988 Once the frequencies are high
shape and orientation of the cylinders. This dependence o@nough or the range to the target small enough, then many
curs in spite of the fact thata<1 where the scattering is in Fresnel zones occupy the cylinder and the cylinder appears
the Rayleigh region with respect to the radius of the bodyacoustically like an infinitely long cylindetDiPerna and
Here, the phase variabilities are small across any given crosStanton, 1991 The trend in this latter case levels off as with
sectional slice of the bodies. However, for the bent cylinderthe other bodiegnot shown. For end-on incidence, the scat-
the phase will vary along the length of the body, regardlessering is due to the rounded ends of the cylinders and the
of orientation. Furthermore, for orientations of the straighttrend is constant, but at a lower level since the cross section
cylinder away from broadside incidence, the phase will varyof the ends is relatively small.
along the length of that body as well. Once the scattering is averaged over angle of orienta-

The transition or “turning point” from Rayleigh to geo- tion, some of the differences between the scattering by the
metric scattering is different for spheres versus cylindersphere and cylinders tend to diminish. This is due to the
having the same volume. For broadside incidence or avedirectional nature of the scattering by the cylinders: for a
ages over a wide range of angles of orientation, it dependsingle orientation, a substantial portion of the scattered sig-
upon the cross-sectional radius of the body. For bodies ofials from a cylinder may or may not be in the direction back
constant volume, the radius of the spherical body is aboutoward the receiver. However, once averaged over all angles
two times bigger than thecylindrical) radius of the cylinder of orientation, the orientations where substantial backscat-
whose length tdcylindrical) radius is 16(i.e., for euphausi- tered energy occurs become part of the average, hence reduc-
ids). For end-on incidence, the turning point of the cylindersing the differences between the average scattering by the
depends upon the length which, in this case, is much greatelifferent bodies. For example, at broadside incidence, the
than the radius of the sphere of the same volume. scattering by a straight cylinder may be stronger than that of
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the bent cylinder at broadside incidence. For orientationgABLE Il. Number of objects per cubic meter it would require to produce
away from broadside incidence, the scattered signal from th%volume scattering strength ef70 dB. The volume of each object is fixed
traight cvlind ill diminish ' h idlv th that at 0.30 cm. The angular distributions of the bent cylinders are varied as
straight cylinder W' L LRI more rapialy .an al indicated at the top of the columns. The models, body dimensions, average
from the bent cylinder because the width of the main lobe obver size, and values @, h, andp, /L (cylinders only are the same as in
the scatter pattern of the straight cylinder is narrower thairfrig. 2. The frequencies chosen correspond to those of commercially avail-
that of the bent cylinder of the same length. Hence, the!e echosounders.
straight cylinder has a stronger but narrower main lobe com-

pared with that of the bent cylinder. The average over all Cylinder

angles gives nearly the same value for each type of cylindef;"®d N N N N Uniform
indicating that the change in shape of the main lobes offsetkH?)  Sphere (20°, 209 (30°, 209 (40°, 20 (50°, 209 [0, 3607
the differences in overall levels within the main lobes. This 38 27 50 76 140 280 160
phenomenon, in essence, is related to the principle of con-120 i; 2.3 g.g ;g Zg 1%
servation of energyStantonet al., 1993h). [Of course, aver- " e 52 20 0 1o

aging over narrower distributions can sometimes result in
differences as well, as illustrated, for example, in Figs. 2 and
3 of this paper, Stantoet al. (1993h, and Demer and Martin
(1995.]

Another effect in the averaging over size and angle o

tion of the echoes from a 38- or 120-kHz single frequency

tsystem could be affected by about 5 dB when surveying

: o . . 34-mm-long euphausiids with a (R0°,909 distribution

orientation involves the smoothing out of the oscillatory pat-_, . :

tern of target strenath versus frequency. For the sphere thwh|le the work at 200 or 420 kHz would be relatively unaf-
9 g g Y. P ',__fected for that length of animai&ig. 3). For a distribution of

effect of smoothing out is due solely to the fact that the o : . o L
positions of the nulls and peaks of the pattern are related t’c\)|(45 , 207 the interpretation for 34-mm-long euphausiids is

the radius of the body. The pattern is slightly different from affected by about 6-7 dB f(_)r most frequencies at or aboye
o NN . . 8 kHz, except for frequencies near 120 kHz where the dif-
realization to realization in the averaging over sizes, an

. . .. Terences are much led&ig. 2. These types ofdecibe)
hence the null value of one realization will be averaged with . . .
. o . . .. errors can translate into errors in estimates of the numbers of
higher values from other realizations, which will tend to fill animals causing the scatterifigable I
in the nulls. The nulls become increasingly affected for high 9 |

. ) S . X Success of a two- or multi-frequency system is also af-
frequencies as a given change in size will be larger Wltf}ected by the shape and behavioral conditions. Each ap-
respect to wavelength at the higher frequencies. |

For the cylinders, the pattern of target strength versu$roaCh not only depends upon the value of the scattering

. ; evels, but the “transition point” between the Rayleigh and
frequency is dependent upon both sias with the sphejeas eometric scattering regiofGreenlaw, 1979; Holliday and

well as orientation. Consequently, averages over both siz%. ; ] .
. . . ieper, 1995 A crucial phenomenon illustrated in these cal-
and orientation cause reduced structure in the pattern. How-

. culations is the fact that the transition point for the sphere is
ever, because of the fact that the backscattering values . ;
T ifferent from that of a cylinde(Fig. 3). For example, for a
broadside incidence are much greater than those at end-o

the pattern near broadside incidence will tend to dominatg "mm-long cylinder, the point is at about 150 kHz. For a

. . : Sphere with the same volume as that of a 29-mm-long cylin-
the scattering. Still, the average over sizes affects the patter - - :
. der, the point is at about 75 kHz. Hence the transition points
as much as with the sphere.

: ; . are different by a factor of 2. This difference would have a
While the averaging reduces differences between the . . .
rofound effect on an analysis or algorithm that relies on

scattering by the bodies of various shapes, the scattering st howing where the transition point is
depends upon the particular distribution of orientation of the '
bodies. For averages over the distribution of angles of orien-
tation N(20°,909 for the cylinders, the scattering levels were V. SUMMARY AND CONCLUSIONS

similar for the cylinders and spheres in the geometric region Comparisons between the scattering by weakly scatter-

(_F|g. 3. _For _other dlstrlbut_lons, the averages were Some_ing spheres and cylinders of the same volume have shown
times quite different, especially when the mean angle of ori-,

entation of the cylinders was well away from broadside in similar or identical levels under certain limiting conditions
. . o “and dramatic differences under other conditions. The levels
cidence(Fig. 2). For distributions of N20°,209, N(20°,609,

i L are identical in the limit of very low frequencies when the
and uniform(0—2m), th? scattering IS .W'th'n several dB of product of the wave number and all outer dimensions of the
that of the sphere at high frequencigsg. 2. body is much less than unity. However, that region is not
particularly useful because the echo levels tend to be negli-
gibly small in practical survey systems. For moderately low

The results show that for high enough acoustic frequenfrequenciesia<<1kL=1) and higher, there are distinct dif-
cies and certain distributions of angle of orientation, inter-ferences between the scattering levels of the different bodies
pretation of surveys of elongated animals is relatively insendue to the elongated nature of the cylinders and orientation
sitive to the choice of model shapge., sphere versus effects. For certain orientation distributions, the averaged
cylinder). However, for lower frequencies or other behav- scattering levels of all bodies are very close to each other in
ioral conditions, the animal shape and orientation distributhe geometric scattering region. Other distributions produce
tion need to be taken into account. For example, interpretasubstantially different average levels between the sphere and

IV. FIELD IMPLICATIONS
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cylinders. Regardless of orientation distribution, the turningbemer, D. A., and Martin, L. V(1999. “Zooplankton target strength:

point between Rayleigh and geometric scattering occurs ag_\lijMmeth gf arezl gependeﬁe?K”lgéﬁcogst. Solc. Aariin.llﬁll—lllah

: H H IPerna, D. |., an tanton, T. . “Fresnel zone effects in the
different frequencies for the bodies. . scattering of sound by cylinders of various lengths,” J. Acoust. Soc. Am.
These results show that for surveys of elongated animalsgg 3345_3355.

in the ocean, the averaged echo ener¢gay, from an echo Endo, Y.(1993. “Orientation of Antarctic Krill in an aquarium,” Nippon
integratoy could be relatively insensitive to shape at high Suisan Gakkaist9, 465-468. _ _

enough acoustic frequencié®r example, greater than 300 Fosogg’ Km%ﬁigs_‘fﬁg?d of sound irEuphausia superba J. Acoust.
kHz for a 34-mm-long euphausjicind for certain distribu- Foote', K. (.3.,’Everson, I, Watkins, J. L., and Bone, D.(&R90. “Target
tions of angles of orientation. However, for surveys involv- strengths of Antarctic kril{Euphausia superbaat 38 and 120 kHz,” J.
ing other distributions of angles of orientations at high fre- Acoust. Soc. Am87, 16-24.

: : « Gaunaurd, G. C(1985. “Sonar cross sections of bodies partially insonified
qguencies or lower frequenciesthe “moderately low by finite Sound beams.” IEEE J. Ocean EX@E-10, 213230,

frequency range” which would “be, for example, 20—200Greenlaw, C. F.(1977. “Backscattering spectra of preserved zooplank-
kHz for 34-mm-long euphausiifis the results become ton,” J. Acoust. Soc. Am62, 4452,
Strong|y dependent upon Shape and the mode”ng must digir_eenlaw,‘ C. F.(1979. “Acoustical estimation of zooplankton popula-
tinguish between spherical and cylindrical animals. tions,” Limnol. Oceanogr24, 226-242. .
. . . Holliday, D. V., and Pieper, R. §1995. “Bioacoustical oceanography at
Also, while the focus of this work involved shape de- ' high frequencies,” ICES J. Mar. Sc2, 279-296.
pendencies of acoustic scattering for bodies with the sameoliiday, D. V., Pieper, R. E., and Kleppel, G. 8989. “Determination of
material properties, variations in material properties also sig- ZOOD'%”kéO” Sizlel a”fl‘_ CE“StrlibUt'i\jn ‘Zghsg‘u'eﬁl'frequency acoustic technol-
s ; : : ogy,” J. Conseil Int. L'Explor. Mer.46, 52—61.
nlflcantly affect the scattering levels as bneﬂy dlscusseq}ohnson, R. K(1977. “Sound scattering from a fluid sphere revisited,” J.
herem_[see, for_ examp_le, Stamm al. (1_994) for dgta and Acoust. Soc. Am61, 375-377; “Erratum: ‘Sound scattering from a fluid
modeling of animals with various material properties as well sphere revisited’,” J. Acoust. Soc. Ar63, 626 (1978.
as references in that paper to other works on the subject Kils, U. (1981). “The swimming behavior, swimming performance and en-
In conclusion. as observed in this study and the many ergy balance of Antarctic krillEuphausia superhd BIOMASS Science
. ! . . . Series Vol. 3.
studies re_ferencefj herein, the _scattgrmg of sound IS @ COMYrarston, P. L.(1992. “Geometrical and catastrophe optics methods in
plex function of size, shape, orientation, and material prop- scattering,” inPhysical Acousticsedited by A. D. Pierce and R. N. Thur-
erties of the body as well as acoustic wavelength. Ideally, ston(Academic, New Yor Vol. 21. o _
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